Appendix A.7.7

BD02 Culverts and Underpasses

A.7.7

Galway County Council N6 Galway City Transport Project

Culvert and Underpass Structures Preliminary Design Report

GCOB-4.04-020-013

Issue 3 | 23 October 2017

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 233985

Ove Arup & Partners Ireland Ltd

Corporate House City East Business Park Ballybrit Galway H91 K5YD Ireland

ARUP

Document Verification

ARUP

Job title		N6 Galway City Transport Project		Job number	
					233985
Document title		Culvert and	Underpass Structures	Preliminary	File reference
		Design Rep	ort		GCOB-4.04-020-
Document r	ef	GCOB-4.04	-020-013		·
Revision	Date	Filename	GCOB-4.04-020-004 Underpasses)_Issue	GCOB-4.04-020-004 (PDR Culverts & Underpasses)_Issue1.docx	
Issue 1	8 Sep 2016	Description	First Issue		
			Prepared by	Checked by	Approved by
		Name	Yalda Acar	Pat Moore	Eileen McCarthy
		Signature	Y adda for	RM.	lileen McCuthy.
Issue 2	24 July 2017	Filename	GCOB-4.04-020-00- Culverts&Underpass	4 (PDR ses)_Issue2.docx	
		Description	Description Issue 2		
			Prepared by	Checked by	Approved by
		Name	Yalda Acar	Pat Moore	Eileen McCarthy
		Signature	Yaldafen	RM.	lileen Mc Cuthy.
Issue 3	23 Oct	Filename	GCOB-4.04-020-004 (PDR Culverts&Underpasses)_I3.docx		
	2017	Description	on Issue 3		
			Prepared by	Checked by	Approved by
		Name	Yalda Acar	Pat Moore	Eileen McCarthy
		Signature	Y aldafor	RM.	Eleen Wholey
			Issue Docume	nt Verification with I	Document 🗸

Contents

			Page
1	Introdu	ction	1
	1.1	Design Brief given to the authors, including dates	1
	1.2	Background information covering the origins for the need to the structure	for 1
	1.3	Previous studies and their recommendations	1
2	Site and	l function	2
	2.1	Site location	2
	2.2	Function of the structure and obstacles crossed	2
	2.3	Choice of location	3
	2.4	Site description and topography	4
	2.5	Vertical and horizontal alignments	9
	2.6	Cross sectional dimensions on the alignments	9
	2.7	Conflicting underground and overground services	12
	2.8	Geotechnical summary	13
	2.9	Hydrology and hydraulic summary	13
	2.10	Archaeology summary	14
	2.11	Environmental summary	14
	2.12	Sustainability	14
3	Structu	re and aesthetics	15
	3.1	General description of recommended structures	15
	3.2	Aesthetic considerations	16
	3.3	Proposals for the recommended structure of family of structures	17
4	Safety		20
	4.1	Traffic management during construction including land for temporary diversions	r 20
	4.2	Safety during construction	20
	4.3	Safety in use	20
	4.4	Lighting	20
5	Cost		21
	5.1	Budget Estimate in current year, including whole life cost	21
6	Design	Assessment Criteria	23
	6.1	Normal Loading	23
	6.2	Abnormal Loading	23

	6.3	Footway live loading	23
	6.4	Provision for exceptional abnormal loads	23
	6.5	Any special loading not covered above	23
	6.6	Heavy or high load route requirements and arrangements being made to preserve route	23
	6.7	Minimum headroom provided	23
	6.8	Authorities consulted and any special conditions required	24
7	Grour	nd Conditions	25
	7.1	Description of the ground conditions and compatibility wit proposed foundations	th 25
8	Drawi	ings and Documents	26
	8.1	List of all documents accompanying the submission	26

Appendices

Appendix A

Drawings

Appendix B

Extract from ground investigation data

Appendix C

Hydrology Assessment for OPW Section 50 Approval

1 Introduction

1.1 Design Brief given to the authors, including dates

This report has been produced by Arup, who have been appointed by Galway County Council to provide multi-disciplinary engineering consultancy services for the N6 Galway City Transport Project. Galway County Council, Galway City Council, Transport Infrastructure Ireland (formerly known as the National Roads Authority) and the National Transport Authority are collaborating in developing a solution to the existing transportation issues in Galway City and its environs. The solution will include a smart mobility component, public transport component and a road component. The road component of the solution is known as N6 Galway City Ring Road (GCRR).

1.2 Background information covering the origins for the need for the structure

The underpass and culvert structures are required as part of the proposed N6 Galway City Ring Road. These underpasses and culverts are required to maintain streams and watercourses, to provide mammal passage and to mitigate environmental impacts.

1.3 Previous studies and their recommendations

Previous studies and documents relevant to this Outline Structures Report are listed below.

- Galway County Council. Project Brief. Phase 1, Scheme Concept and Feasibility Studies (GC/14/11222, 2 May 2015).
- Galway County Council. Project Brief. Phase 2, Route Selection (GC/14/11222, 6 November 2015).
- GCOB-4.04-009 Route Selection Report, Issue 1, August 2015.
- Galway Transport Strategy, An Integrated Transport Management Programme for Galway City and environs, Technical Report, September 2016

2 Site and function

2.1 Site location

The structures are located at the chainages stated in Table 1 below, along the proposed road development.

2.2 Function of the structure and obstacles crossed

Underpass C10/01 is required to span over exposed limestone pavement (i.e. priority Annex I habitat) and provide wildlife passage under the proposed road development.

Hydraulic culverts and minor stream crossings facilitate the necessary drainage and watercourse provisions due to the proposed road development.

Along the scheme, there are a number of underpass structures needed to facilitate the movement of wildlife. In some cases such underpasses also serve as hydraulic culverts.

Name of structure	Chainage	Function	Other
	C C		Requirements
C00/01	00+640	Combined Hydraulic Culvert + Mammal Underpass	-
C02/01a	02+740	Hydraulic Culvert	-
C02/01b	02+850	Combined Hydraulic Culvert + Mammal Underpass	-
C03/01	03+065	Combined Hydraulic Culvert + Mammal Underpass	-
C03/03	03+945	Combined Hydraulic Culvert + Mammal Underpass	-
C03/04	03+965	Combined Hydraulic Culvert + Mammal Underpass	-
C04/01	04+120	Combined Hydraulic Culvert + Mammal Underpass	Otter Ledge
C04/02	04+915	Combined Hydraulic Culvert + Mammal Underpass	Otter Ledge
C06/00	06+460	Mammal Underpass	-
C06/01	06+850	Combined Hydraulic Culvert + Mammal Underpass	-
C07/00	07+100	Mammal Underpass	-

Table 1	Culverts and	l Underpasses
---------	--------------	---------------

Name of structure	Chainage	Function	Other
			Requirements
C07/02a	07+225	Combined Hydraulic Culvert	-
		+ Mammal Underpass	
C08/01a	08+450	Mammal Underpass	-
C08/02	08+650	Mammal Underpass	-
C08/04	08+620	Mammal Underpass	-
C08/05	08+580	Mammal Underpass	-
C09/01	09+530	Mammal Underpass	-
C09/02	09+545	Mammal Underpass	-
C09/03	09+560	Mammal Underpass	-
C09/04	09+575	Mammal Underpass	-
C09/05	09+590	Mammal Underpass	-
C09/06	09+790	Mammal Underpass	-
C09/07	09+920	Mammal Underpass	-
C10/01 - environmental	10+040	Environmental underpass	-
underpass		spanning over exposed	
		limestone pavement	
C12/02	12+380	Mammal Underpass	-
C12/03	12+410	Mammal Underpass	-
C12/04	12+440	Mammal Underpass	-
C13/01	12+980	Mammal Underpass	

2.3 Choice of location

The structures location was chosen based on the location of the proposed road development relative to location of necessary crossings for the culverts and underpass structures.

2.4 Site description and topography

Name of Structure	Site description and Topography	Archaeology at Structure	Ecology at Structure
Culvert C00/01	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 1 – Liberty Stream A townland boundary listed in Chapter 13 of the EIS as TB 2 – Liberty Stream (Also AAP 1)	Ecological constraint Annex Code 4030 (Fosset Code HH1) in vicinity of structure. Fossett Code GS3/HD1, Local Importance (Higher Value). Culvert to provide bat passage.
Culvert C02/01a	Culvert to allow existing stream to cross Bearna to Moycullen Road L1321, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 2 – Trusky Stream	An Ecological Constraint of Local (High) Importance listed in Chapter 8 of the EIS as EC09 is impacted by the structure C02/01a. The habitat is buildings and artificial surfaces, scrub and a wet grassland under Fossit Code BL3, WS1 and GS4.
Culvert C02/01b	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 2 – Trusky Stream A townland boundary listed in Chapter 13 of the EIS as TB 6 – Former site of townland boundary including a portion of stream	Fosset Code WS1/HD1/GS4/GS3, Local Importance (higher value). Culvert to provide bat passage.
Culvert C03/01	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	A townland boundary listed in Chapter 13 of the EIS as TB 7 – Stone Wall	Fosset Code GS4/WS1/ER1, Local Importance (higher value). Culvert to provide bat passage.
Culvert C03/03	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	None	Fosset Code GS4, Local Importance (higher value). Culvert to provide bat passage.

Table 2Site description and topography.

Name of Structure	Site description and Topography	Archaeology at Structure	Ecology at Structure
Culvert C03/04	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	None	Fosset Code GS4, Local Importance (higher value). Culvert to provide bat passage.
Culvert C04/01	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 3 – Barna Stream A townland boundary listed in Chapter 13 of the EIS as TB 10 – Barna Stream	Fosset Code FW1/WS1/HD1, Local Importance (higher value). Culvert to provide bat and otter passage.
Culvert C04/02	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 4 - Stream A townland boundary listed in Appendix 13 of the EIS as TB 12 - Stream (AAP 4) and field boundary (boundary completely overgrown)	Ecological constraint Annex Code 4030 (Fosset Code HH1/HH3) in vicinity of structure. Ecological constraint Annex Code 4010 (Fosset Code HH1/HH3) in vicinity of structure. Fossett Code FW1, Local Importance (higher value). Fossett Code GS4, Local Importance (lower value). Culvert to provide bat, badger and otter passage.
Culvert C06/00	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	None	Fossett Code GA1, Local Importance (lower value). Fossett Code BL3, Local Importance (lower value). Culvert to provide bat passage.
Culvert C06/01	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 5 - Stream and boggy hollow Archaeological Heritage site as listed in Chapter 13 as AH 2 - Bullaun Stone	Fossett Code GA1, Local Importance (lower value). Fossett Code GS4, Local Importance (lower value). Fossett Code WL2/HD1/GS4, Local Importance (lower value). Culvert to provide badger passage.

Name of Structure	Site description and Topography	Archaeology at Structure	Ecology at Structure
Culvert C07/00	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	Previously Unrecorded Sites/ Structures of Cultural Heritage Merit listed in Chapter 13 of the EIS as CH33 - Very well built stone walled laneway, marked on the 1841 first edition map.	Fossett Code GA1/GS1, Local Importance (lower value). Culvert to provide bat passage.
Culvert C07/02a	Culvert to allow existing stream to cross proposed road development and to facilitate the passage of wildlife, proposed road development on embankment.	None	Fossett Code GA1/GS4, Local Importance (lower value). Fossett Code FW4, Local Importance (higher value). Culvert to provide bat passage.
Culvert C08/01a	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	None.	Fosset Code Residential. Fosset Code BL3, Local Importance (lower value). Culvert to provide bat passage.
Culvert C08/02	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	A designated landscape listed in Chapter 13 as DL 7 - Dangan Cottage, Dangan House, Dangan Nunnery, Mary Ville demesnes.	Fosset Code Residential. Fosset Code BL3, Local Importance (lower value). Culvert to provide bat passage.
Culvert C08/04	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	None.	Fosset Code Residential. Fosset Code GS2. Culvert to provide bat passage.
Culvert C08/05	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	A designated landscape listed in Chapter 13 as DL 7 - Dangan Cottage, Dangan House, Dangan Nunnery, Mary Ville demesnes.	Fosset Code Residential. Local Importance (lower value). Culvert to provide bat passage.
Culvert C09/01	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	A designated landscape listed in Chapter 13 as DL 8 - Menlo Castle demesne.	Fosset Code WD1, Local Importance (higher value). Culvert to provide bat and badger passage.
Culvert C09/02	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	A designated landscape listed in Chapter 13 as DL 8 - Menlo Castle demesne.	Fosset Code WD1, Local Importance (higher value). Culvert to provide bat and badger passage.

Name of Structure	Site description and Topography	Archaeology at Structure	Ecology at Structure
Culvert C09/03	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	A designated landscape listed in Chapter 13 as DL 8 - Menlo Castle demesne.	Fosset Code WD1, Local Importance (higher value). Culvert to provide bat and badger passage.
Culvert C09/04	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	A designated landscape listed in Chapter 13 as DL 8 - Menlo Castle demesne.	Fosset Code WD1, Local Importance (higher value).
		Previously Unrecorded Sites/ Structures of Cultural Heritage Merit listed in Chapter 13 of the EIS as CH46 - Possible circular enclosure identified during AP analysis and marked as a possible feature of the 1895- 1900 mapping.	Culvert to provide bat passage.
Culvert C09/05	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	A designated landscape listed in Chapter 13 as DL 8 - Menlo Castle demesne. Previously Unrecorded Sites/ Structures of Cultural Heritage Merit listed in Chapter 13 of the EIS as CH46 - Possible circular enclosure identified during AP analysis and marked as a possible feature of the 1895- 1900 mapping.	Fosset Code WD1, Local Importance (higher value). Culvert to provide bat passage.
Culvert C09/06	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	A designated landscape listed in Chapter 13 as DL 8 - Menlo Castle demesne.	Fosset Code GS2/WN2, Local Importance (higher value). Fosset Code GS1, Local Importance (lower value). Culvert to provide bat passage.
Culvert C09/07	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	None.	Fosset Code WN2, Local Importance (higher value). Fosset Code GS1, Local Importance (lower value). Culvert to provide bat passage.

Name of Structure	Site description and Topography	Archaeology at Structure	Ecology at Structure
C10/01	Culvert to facilitate the passage of wildlife and to span over exposed limestone pavement, proposed road development on embankment.	None	Ecological constraint Annex Code 8240 in vicinity of structure. Fossett Code ER2, International Importance. Culvert to provide bat and badger passage.
Culvert C12/02	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 10 - Boggy pasture – margins of Lough an Dúlaigh	Ecological constraint Annex Code 6410 (Fossett Code GS4) in vicinity of structure. Fossett Code GA1, local importance (lower value) Culvert to provide bat passage.
Culvert C12/03	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 10 - Boggy pasture – margins of Lough an Dúlaigh	Fosset Code GA1, Local Importance (lower value). Culvert to provide bat passage.
Culvert C12/04	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 10 - Boggy pasture – margins of Lough an Dúlaigh	Fosset Code GA1, Local Importance (lower value). Culvert to provide bat passage.
Culvert C13/01	Culvert to facilitate the passage of wildlife, proposed road development on embankment.	Archaeological Heritage site as listed in Chapter 13 as AH 24 - Redundant record – Non antiquity Area of Archaeological Potential listed in Chapter 13 of the EIS as AAP 11 - Boggy hollow (AH 24) Built Heritage (BH) sites located within the receiving environment listed in Chapter 13 of the EIS as BH12 - Thatched cottage (An Caisleán Gearr)	Fosset Code GA1/GS1/GA2/BL3, Local Importance (lower value). Culvert to provide bat passage.

2.5 Vertical and horizontal alignments

Proposed Road Development mainline alignment

Horizontal and vertical alignment varies along the route at differs at each of the culvert and underpass structures.

A design speed of 85km/h was utilised for the Type 1 Single Carriageway from the R336 to Ballymoneen Road.

A design speed of 100km/h was utilised for the Dual Carriageway and Urban Motorway from the Ballymoneen Road to the N6 interchange at Coolagh.

2.6 Cross sectional dimensions on the alignments

With respect to the proposed road development mainline, a Type-1 Single Carriageway is proposed for the section west of Ballymoneen Road Roundabout and a Type-1 Dual Carriageway for the section east of the Ballymoneen Road Roundabout.

The Type 1 single carriageway cross-section proposed from R336 Coast Road to Ballymoneen Road in accordance with TII Publications DN-GEO-03036 (Cross Sections and Headroom) is:

•	Eastbound Verge Width (minimum)	3.0m
•	Eastbound Hard Shoulder	2.5m
•	Carriageway Width	7.3m (2x3.65m lanes)
•	Westbound Hard Shoulder	2.5m
•	Westbound Verge Width (minimum)	<u>3.0m</u>
		18.3m

The Type 1 Dual Carriageway cross-section proposed from the Ballymoneen Road to the existing M6 tie-in at Coolagh in accordance with NRA DMRB TD 27/11 is:

•	Eastbound Verge Width (minimum)	3.0m	
•	Eastbound Hard Shoulder	2.5m	
•	Eastbound Carriageway Width	7.0m	(2 x 3.5m lanes)
•	Central Reserve Width	2.6m	
	(including 2 x0.5m Hard Strips)		
•	Westbound Carriageway Width	7.0m	(2 x 3.5m lanes)
•	Westbound Hard Shoulder	2.5m	
•	Westbound Verge Width (minimum)	<u>3.0m</u>	
		27.6m	

The dimensions above exclude any additional width required for sightline visibility, which varies depending on the alignment at each structure's location.

The cross section dimensions at the structures is given in **Table 3**, **Table 4**, and **Table 5** below.

Name of Structure	Carriageway Width [2] (m)	Raised Verge Width (m) - Left [1]	Raised Verge Width (m) - Right [1]	Parapet width (m) – Left[1]	Parapet width (m) – Right[1]
C10/01	Varies 24.1min	Varies 0.6min	Varies 0.6min	0.5	0.5

Table 3 Dimensions on bridge deck at C10/01

[1] When considered in the direction of increasing chainage.

[2] Carriageway width measures from outer edge of hardshoulders (includes central reserve)

Table 4	Cross section at hydraulic culverts and mammal underpasses box
structures	

Name of Structure	Clear Width (m)	Clear Height (m)	Bed Depth (m)
C00/01	2.5	1.35	0.30
C02/01a	2.1	1.8	0.30
C02/01b	2.5	2.5	0.30
C03/01	2.5	1.2	0.30
C03/03	2.5	2.5	0.30
C03/04	2.5	2.5	0.30
C04/01	5.0	2.5	0.30
C04/02	3.1	2.5	0.30
C06/00	2.5	2.5	n/a
C06/01	2.5	2.5	0.30
C07/00	2.5	2.0	n/a
C08/01a	2.5	2.5	0.15
C08/02	2.5	2.5	0.70
C08/04	2.5	2.5	n/a
C08/05	2.5	2.5	n/a
C13/01	2.5	1.5	n/a

Figure 1 Cross section at hydraulic culverts and mammal underpasses box structures

Name of Structure	Clear Width (m)	Minimum Rise (m)	Bed Depth (m)
C07/02a	2.5	2.5	0.30
C09/01	5.0	4.0	n/a
C09/02	5.0	4.0	n/a
C09/03	5.0	4.0	n/a
C09/04	5.0	4.0	n/a
C09/05	5.0	4.0	n/a
C09/06	2.5	2.5	n/a
C09/07	2.5	2.5	n/a
C12/02	2.5	2.5	n/a
C12/03	2.5	2.5	n/a
C12/04	2.5	2.5	n/a

 Table 5 Cross section at environmental buried arch structures

Figure 2 Cross section at environmental buried arch structures

2.7 Conflicting underground and overground services

All the utility providers have been consulted during the preliminary design process. The existing services in the vicinity of the proposed structures are outlines in **Table 6** below.

Table 6 Existing services

Name of Structure	Existing Services	
C00/01	None	
C02/01a	100mm Watermain	
	Eir	
C02/01b	None	
C03/01	None	
C03/03	110kV ESB Overhead	
C03/04	110kV ESB Overhead	
C04/01	None	
C04/02	None	
C06/00	250mm Watermain (will be decommissioned in design proposals) Overhead Eir (will be decommissioned in design proposals)	
C06/01	None	
C07/00	None	
C07/02a	None	
C08/01a	Decommissioned watermain and underground ESB connection	
C08/02	Utilities associated with house demolition	
C08/04	Utilities associated with house demolition	
C08/05	Utilities associated with house demolition	
C09/01	None	
C09/02	None	
C09/03	None	
C09/04	None	
C09/05	None	
C09/06	None	
C09/07	None	
C10/01	None	
C12/02	None	
C12/03	None	
C12/04	None	

Name of Structure	Existing Services
C13/01	None

2.8 Geotechnical summary

The geotechnical summary for the Accommodation Underpass structure (Category 2) is provided in **Table 7** below.

 Table 7 Geotechnical summary

Name of Structure	Chainage	Average Depth to Groundwater (m)	Average depth to Rockhead	Ground Conditions	Karst Risk
C10/01 – Environmental underpass	10+050	3.5	1.4	Soft sandy gravelly CLAY Firm sandy gravelly CLAY Medium strong to very strong typically non-intact LIMESTONE	High

For the remaining structures, the geotechnical information is available in the scheme factual reports¹.

It should be noted that at the culvert structures noted below, (not covered in **Error! Reference source not found.**6) the following geotechnical risks have been identified:

- C09/06 Menlough Castle High karst risk due to anomalies in geophysics profile GP3/06 (@Ch. 9+730 to 9+780)
- C12/02, 03, 04 Ballindooly Lough High karst risk coupled with deep soft overburden deposits, >20m (GP3/10 @ Ch. 12+300 to 12+390)
- C13/01 Castlegar School Road Paleolandscape/karst coupled with deep firm overburden deposits (likely based on trend of GP3/12 and BH3/32R)

Due to the high potential for karst features at these structure locations, piled foundations or other measured may be necessary. Additional ground investigation is recommended at these locations to further assess this risk.

2.9 Hydrology and hydraulic summary

For the culverting of existing streams, Section 50 consent has been obtained under the 1945 Arterial Drainage Act from the OPW. Please refer to Appendix C which includes a copy of the hydraulic assessment report.

GCOB-4.04-020-013 | Issue 3 | 23 October 2017

¹ N6 Galway City Outer By-Pass Contract 1 GI Menlough to Garraun North 2003

N6 Galway City Outer By-Pass Contract 2 GI Gortatleva to Menlough 2003

N6 Galway City Outer By-Pass Contract 3 GI Forramoyle West to Gort 2004

N6 Galway City Outer By-Pass Detailed Design Ground Investigation 2006

N6 Galway City Transport Project - Phase 2 Ground Investigation Contract 1 2015

N6 Galway City Transport Project – Phase 3 Ground Investigation Contract 1 2016

N6 Galway City Transport Project - Phase 3 Ground Investigation Contract 2 2016

J:233000/233985-00/4. INTERNAL'4-04 REPORTS'4-04-03 INFRASTRUCTURE'20. BRIDGES'9. CULVERTS&UNDERPASSES'ISSUE 3/GCOB-4.04-020-013 (PDR CULVERTS&UNDERPASSES) I3 DOCX

2.10 Archaeology summary

The archaeology summary is provided in Table 2 above.

2.11 Environmental summary

The locations of the otter and badger underpasses are based on the analysis of field survey results. Mitigation measures and culvert sizes have been designed in combination with the scheme ecologists. Otter passage facilities are located on watercourses crossed by the proposed road development where otters were recorded during the field surveys or, in the absence of results from the field surveys, on watercourses where there are otter records elsewhere within the catchment. Badger underpasses are sited to reconnect severed badger territories and commuting routes along habitat features. In terms of sizing and design, otter and badger underpass facilities are as per the relevant TII Guidelines.

The location of bat underpasses is based upon analysis of the survey results, including surveys at the crossing points of the proposed road development and important landscape features for bats, as they relate to the bat species recorded and habitat severance impacts identified (e.g. affecting commuting routes, foraging habitat or existing connectivity between roosting sites). The sizing of bat underpasses was determined in consideration of the target species' requirements, in that regard, based upon the findings of current published literature.

There are a small number of salmonid rivers interacting with the N6 GCRR. Inland Fisheries Ireland have been consulted regarding the requirements for fish passage at these locations.

Further information with regard to the environmental (ecology) requirements at the relevant structures is provided in Table 2 above.

2.12 Sustainability

Concrete is selected as the primary structural material for the underpass and culvert structures. Concrete has a high durability performance and requires little maintenance during the design life (120yrs), where the product is appropriately specified and executed. Portland cement replacements such as ground granulated blast-furnace slag (GGBS) will be used where appropriate.

All underpasses and culverts are of integral construction. This form of construction minimises the inspection and maintenance requirements compared to non-integral forms of construction.

All structures can be readily demolished at the end of the service life of the bridge, and much of the structural materials (concrete, steel etc.) can be recycled and reused.

3 Structure and aesthetics

3.1 General description of recommended structures

3.1.1 Hydraulic Culverts and Mammal Underpasses

Buried reinforced concrete structures are recommended for the culverts and underpasses. The structural form will be box or arch as indicated in **Figure 3** and **Figure 4**.

The choice adopted depends on the requirements of the structure. The drawings included in Appendix A.

These forms of structure are structurally efficient, achieve the performance requirements and are an economic solution to construct and maintain.

Figure 3 Box Structure

Figure 4 Arch Structure

Hydraulic Culverts

For the structures used for watercourse crossings, a buried box or buried arch structure is proposed. At locations where the cover to the top of the structure is greater than 7m, a buried arch structure is proposed, for the remaining structures a buried box configuration is selected. [refer to Drawing GCOB-1700-D-GEN-011]

All hydraulic culverts have a base slab and a bed depth allowance, as given in **Table 4** and **Table 5**. The culverts have been sized based on the required hydraulic capacity outlined in the Section 50 application process i.e. capacity 1% AEP Return

Period Storm plus an allowance for climate change. In addition to this at some locations, the hydraulic capacity of the culverts are oversized and have been increased in size to incorporate mammal passage requirements for example bats, badgers and otters.

Mammal Underpasses.

The mammal underpass structures are for facilitating the passage of wildlife. Typically, the required width is 2.5m and where the cover is greater than 7m a buried arch structure (with base slab) is proposed, and elsewhere a buried box structure is adopted. See Drawing GCOB-1700-D-GEN-011 for details.

At structures C09/01 to C09/05, a series of arch culverts is provided with a span of 5m and internal height of 4m, to ensure appropriate permeability through the embankment at this location

3.1.2 Environmental Underpass

At chainage 10+050, structure C10/01 is required to span over exposed limestone pavement and to facilitate the passage of wildlife. This structure has a span of approximately 20m and consists of precast prestressed beams and insitu deck and reinforced concrete abutments. The typical arrangement is given in **Figure 5** below and on Drawing GCOB-1700-D-C10-01-001.

Figure 5 Structure C10/01

3.2 Aesthetic considerations

For the culverts and underpasses, smooth concrete finishes are to be provided at the exposed faces, and appropriate detailing, such as drip checks and coping elements used to improve the weathering performance of the structure.

3.3 Proposals for the recommended structure of family of structures

3.3.1 Proposed category

The proposed category is given in **Table 8** below.

3.3.2 Span arrangements

Table 8 Span arrangements

Name of Structure	Structural Form (m)	Clear Span (m)	Category classification
Culvert C00/01	Buried RC box	2.5	0
Culvert C02/01a	Buried RC box	2.1	0
Culvert C02/01b	Buried RC box	2.5	0
Culvert C03/01	Buried RC box	2.5	0
Culvert C03/03	Buried RC box	2.5	0
Culvert C03/04	Buried RC box	2.5	0
Culvert C04/01	Buried RC box	5.0	1
Culvert C04/02	Buried RC box	3.1	1
Culvert C06/00	Buried RC box	2.5	0
Culvert C06/01	Buried RC box	2.5	0
Culvert C07/00	Buried RC box	2.5	0
Culvert C07/02a	Buried RC arch	2.5	0
Culvert C08/01a	Buried RC box	2.5	0
Culvert C08/02	Buried RC box	2.5	0
Culvert C08/04	Buried RC box	2.5	0
Culvert C08/05	Buried RC box	2.5	0
Culvert C09/01	Buried RC arch	5.0	1
Culvert C09/02	Buried RC arch	5.0	1
Culvert C09/03	Buried RC arch	5.0	1
Culvert C09/04	Buried RC arch	5.0	1
Culvert C09/05	Buried RC arch	5.0	1
Culvert C09/06	Buried RC arch	2.5	0
Culvert C09/07	Buried RC arch	2.5	0
C10/01	Single Span Integral Bridge	20.0	2
Culvert C12/02	Buried RC arch	2.5	0
Culvert C12/03	Buried RC arch	2.5	0
Culvert C12/04	Buried RC arch	2.5	0

Name of Structure	Structural Form (m)	Clear Span (m)	Category classification
Culvert C13/01	Buried RC box	2.5	0

3.3.3 Approaches including run-on arrangements

The approach embankments will be constructed using a compacted acceptable material with Clause 6N material behind end walls.

3.3.4 Substructure

For the hydraulic culverts and mammal underpasses, the proposed structure is a buried box/arch and the substructure is integrated with the superstructure. Refer to section 3.3.6 for further details.

At Structure C01/01 a reinforced concrete abutment, integral with the superstructure is proposed.

3.3.5 Foundation type

Typically, spread foundations will be used at the underpass and culvert structures. However, where there is soft material or karst features, alternative foundations, such as piles, may be necessary. Refer to Section 2.8 and Section 7.1 for further details.

3.3.6 Superstructure

With the exception of underpass C10/01, the reinforced concrete box/arch frame structures are adopted. Typically, reinforced concrete headwalls and wingwalls will be used at the ends of the structure. However, at some locations the underpass/culvert may be terminated within a structure retaining the N6 embankment, in which case, this retaining structure will also function as the headwall and wingwall for the underpass/culvert structure.

It is likely that some or all the structural elements will be constructed using precast concrete.

At structure C10/01 a precast prestressed beam with insitu deck superstructure, integral with reinforced concrete abutments on pad footings is proposed.

3.3.7 Articulation arrangements, joints and bearings

The proposed underpasses / culverts are integral buried structures with no expansion joints or bearings. Movement joints will be required along the length of the structure and at the connection to the wingwalls.

3.3.8 Parapet

At all buried structures, a safety barrier with containment level of at least N2 will be provided on both verges of the mainline over the structure. Pedestrian protection will be provided at headwalls and wingwalls in accordance with TII DN-STR-03011 (NRA BD 52).

At C10/01 a 1250mm high H2-W4 parapet, with mesh infill, will be provided at the edge of the bridge structure. The approach and departure safety barrier and transitions will be H2 containment. Inspection and Maintenance

None of the proposed underpass or culvert structures have expansion joints or bearings. The head walls and wing walls will be inspected from land adjacent to the walls. The underside of the roof and the exposed portions of the walls can be inspected from the beneath.

Waterproofing systems, joints, parapets etc shall be designed for Working Life Category 2 (replaceable structural parts, up to 50 years design working life).

All other elements of the structure shall be designed for Working Life Category 5 (\geq 120 years design working life).

4 Safety

4.1 Traffic management during construction including land for temporary diversions

Detailed traffic management proposals will be developed at detail design stage by the appointed Contractor in consultation with their Designers and the consent for the diversions and or road closures will be sought from the appropriate local authority.

4.2 Safety during construction

The Designer will take account of the General Principles of Prevention, as specified in the Schedule 3 of the Safety, Health and Welfare at Work Act 2005, liaise with the Project Supervisor appointed by the Client for the Design Process and the Project Supervisor appointed for the Construction Stage and carry out all other duties as required by Clause 15 of the Safety, Health and Welfare at Work (Construction) Regulations 2013 (S.I. No. 291 of 2013).

The Project Supervisor for the Design Process will comply with all the requirements outlined in Clauses 11, 12, 13 & 14 of the Safety, Health and Welfare at Work (Construction) Regulations 2013 (S.I. No. 291 of 2013).

4.3 Safety in use

Safety barriers in accordance with TII DN-REQ-0303 (NRA TD 19) will be used to protect vehicles on the mainline from the embankment at the buried underpasses and culvert locations. The safety barrier will be located within the verge at the top of the embankment in advance of the approach end and extending past the departure end of the structure.

At Structure C10/01 parapets will be provided across the length of the structure and on the approach and departure in accordance with TII DN-STR-03011 (NRA BD 52).

Pedestrian protection will be provided at the top of headwalls and wingwalls in accordance with TII DN-STR-03011 (NRA BD 52).

4.4 Lighting

No lighting is proposed in the proposed culverts or underpasses.

5 Cost

5.1 Budget Estimate in current year, including whole life cost

Table 9 Budget Estimate

Name of structure	Structure cost Excl. VAT
C00/01	228000
C02/01a	79040
C02/01b	187200
C03/01	115200
C03/03	124800
C03/04	132000
C04/01	159600
C04/02	236160
C06/00	153600
C06/01	153600
C07/00	141600
C07/02a	242400
C08/01a	124800
C08/02	88800
C08/04	110400
C08/05	100800
C09/01	277200
C09/02	286000
C09/03	277200
C09/04	278528
C09/05	281600
C09/06	192000
C09/07	168000
C10/01	699400
C12/02	280800
C12/03	259200
C12/04	230400
C13/01	136800

The cost estimate values given in **Table 9** are based on the cost rate per square metre of structure area given in **Table 10** below. An accuracy range of -10% to +15% is considered to be applicable to the budget cost for this stage of the design.

Table 10 Basis of cost estimate

Structure Type	Rate (Euro/m2)
Box culverts: span ≤ 5m	800
Arch Structures: span <7.5m	800
Prestressed Beam Deck Bridge	1300

6 Design Assessment Criteria

6.1 Normal Loading

Permanent Actions in accordance with IS EN 1991-1-1:2002 and the associated National Annex.

The structure will be designed for Load Models LM1 and LM2 in accordance with IS EN 1991-2:2003 and the associated National Annex.

6.2 Abnormal Loading

Load Model 3 up to and including SV196 (where applicable) will be considered in accordance with IS EN 1991-2:2003 and the associated National Annex.

6.3 Footway live loading

Where applicable, a footway loading shall be in accordance with Clause 5.3.2.1 of IS EN 1991-2:2003. A nominal $q_{fk} = 5kN/m2$ will be adopted.

6.4 **Provision for exceptional abnormal loads**

No exceptional abnormal loads are proposed.

6.5 Any special loading not covered above

Not applicable.

6.6 Heavy or high load route requirements and arrangements being made to preserve route

Not applicable.

6.7 Minimum headroom provided

No local access underpasses.

6.8 Authorities consulted and any special conditions required

Consultation with relevant authorities is on-going. The following groups have been contacted as part of the scheme:

Transport Infrastructure Ireland (TII)

Galway County Council (GCoC)

Galway City Council (GCiC)

Land and home owners

Utility companies (ESB, Gas, Eir, etc.)

Office of Public Works

National Parks and Wildlife Service

Inland Fisheries Ireland

7 **Ground Conditions**

7.1 Description of the ground conditions and compatibility with proposed foundations

The ground conditions for the Environmental Underpass structure (C10/01) is provided in **Table 11** below. For the remaining structures reference should be made to the scheme ground investigation reports.

Name of Structure	Foundation Type	Soil / Rock at Formation Level	Safe Bearing Pressure (kN/m ²)	Formation depth above (+)/ below (-) egl (m)	Depth to Rockhead egl (m)
C10/01 – Environmental underpass	Pad	Soil	308	1.0	1.4

Table 11 Ground Conditions

8 Drawings and Documents

8.1 List of all documents accompanying the submission

Table 12 Drawings

Drawing Number	Drawing Title
GCOB-1700-D-GEN-011	Culverts & Underpasses: Buried Box and Arch Structures
GCOB-1700-ST-C09-1 to 5-001	Culverts & Underpasses: Structures C09/01-C09/05 Sheet 1
GCOB-1700-ST-C09-1 to 5-002	Culverts & Underpasses: Structures C09/01-C09/05 Sheet 2
GCOB-1700 ST-C10-01-001	Culverts & Underpasses: Structure C10/01

Appendix A

Drawings

М		N		0	Р	
<u>ROOFING</u> LOW				DE	SIGN REPORT	
-		NO	TES:			
	///////	1.	ALL DIMENSIO OTHERWISE.	ONS ARE SHOWN I	N MILLIMETRES UNLESS NOTED	
$\gamma \sim \gamma$		2.	ALL LEVELS A	RE SHOWN IN ME	TRES ABOVE ORDNANCE DATUM	Л.

2 No. COATS OF EPOXY RESIN WATERPROOFING PAINT APPLIED TO ALL BURIED SURFACES (OTHER THAN WATERPROOFED SURFACES)

Culv Burie				
PM EMC Drawing	PM	LM	02/08/2017	13
PM EMC For	PM	LM	30/06/2017	12
PM EMC Job No	PM	PD	11/07/2016	11
Chkd Appd 2339	Chkd	Ву	Date	Issue

Drawing Title rts & Underpasses Box and Arch Structures

Drawing Status	ation	
lob No	Drawing No	Issue
233985	GCOB-1700-D-GEN-011	13

\\aloba\\eurone\Dublin\.lobs\233000\233985-00\4 Internal\4-02 Drawinas\4-02-8 Hiahwavs\8 3 Desian Ren\1700 STR\GCOB-1700-D-C09-1 to 5-001-002 dwa

	М				N				0			Р	
								<u>NOTI</u> 1. / 2. /	ES: ALL DIME MILLIMET ALL LEVE DRDNAN	ENSIONS A RES UNL	REPO	RT N IN D OTHEI METRES	RWISE. ABOVE
	0	0		(O		-0	C	0		-oo-		-
													-
-0		_0	_0			o			-0	-00	0	oo-	
	`												
	l2 l1 Issue	17/10/201 1/06/201 Date	7	LM LM By	PM PM Chkd	MS MS Appd		Drawin Culv Stru She Drawin For Job No 2339	erts ar cture C et 1 status Inform	nd Unde C09-01 nation	erpasse: to 05 ∾ D-ST-C09-1	S to 5-001	Issue I2

М	N	0		P
		C		
		Ľ	DESIGN R	EPORT
		NOTES:		
		1. ALL DI MILLIN	MENSIONS AR ⁄IETERS UNLES	E SHOWN IN S NOTED OTHERWISE.
		2. ALL LE ADVA	VELS ARE SHO	WN IN METERS ABOVE

					Drawing Title Culverts a Structure Sheet 2	and Underpasses C09-01 to 05	
12	17/10/2017	LM	РМ	MS	For Infor	mation	
11	01/06/2017	LM	PM	MS	Job No	Drawing No	Issue
Issue	Date	Ву	Chkd	Appd	233985	GCOB-1700-D-C09-1 to 5-002	12

© Arup

Appendix B

Extract from ground investigation data

GEOTECHNICAL BORING RECORD

REPORT NUMBER

CO	NTRAC	r N6 G	Salway City	Transport	Project - Phase	3				D		BOREHC SHEET	OLE NO.	BH3/23 Sheet 1 of 1	
CO GR	-ORDIN	ATES EVEL (m	527,77 727,34 AOD)	0.91 E 5.14 N 26.78	RIG BOR BOR	TYPE REHOL REHOL	E DIAM	ETER (n H (m)	nm)	Dando 30 3.70	00	DATE CO	OMMEN	CED 05/02/2016 ED 05/02/2016	
		Galw	ay County	Council	SPT		MER REI	F. NO.				BORED E	BY SED BY	WC	
		74(0)						0)			Sar	nples			
Depth (m)			Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
- 1	Firm d mediur	ark brown n cobble a	sandy grav	velly CLAY	with a low to					AA32640	В	1.00-1.45		N = 15 (2, 3, 3, 3, 4, 5) N = 15	
3	Mediur with a	n dense lig low to med	ght brown s dium cobble	slightly clay e and bould	ey gravelly SAN ler content		9	24.48	2.30	AA32641	В	3.00-3.45		(3, 3, 2, 3, 4, 6) N = 16 (3, 4, 3, 4, 4, 5)	
- 4 - 5 - 6 - 6 - 7 - 7 - 8 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9															
<u> </u>		RATA BOI	RING/CHIS	ELLING			Wate	r Ca	sina	Sealed	Ris	e Ti	me	ATER STRIKE DET	AILS
Fror 3	n (m) 1 8.6	o (m) 3.7	(h) Co 0.75	omments			3.70	e De 3.	pth 70	At No	3.2	0 2	nin) C	omments Slow	
								I	[I	GRC	OUNDWATER PRO	GRESS
INS	TALLA		AILS				Dat	e	Hole	Casing	De	opth to	Commen	ts	
	Date	Tip Dept	n RZ Top	RZ Base	Туре				Depth		V				
REI	MARKS	0.5hr mo and track boulders	ving boulde ed dumper to block en	ers obstruc from bore trance.	ting access to p hole including re	olot. 0.: eplace	5hr movii ement of	ng rig	D - Sma B - Bulk LB - Lan Env - En	I Disturbed (tub) Disturbed ge Bulk Disturbed vironmental Sam	d ple (Jar +	Vial + Tub)	UT - Un Sample P - Und W - Wa	ndisturbed 100mm Diameter isturbed Piston Sample ter Sample	

REPORT NUMBER

CONTRACT N6 Galway	City Transport Proje	ct - Phase 3				DRILL	HOLE I T	NO	BH: Shee	3/23R et 1 of 2	
CO-ORDINATES 527 727 GROUND LEVEL (mOD)	,773.63 E ,346.05 N 26.93	RIG TYPE			Casagran	de DATE	DRILLE LOGGE	ED ED	24/0 24/0	2/2016 2/2016	
CLIENT Galway Cou ENGINEER ARUP	nty Council	INCLINATI CORE DIA	ION (deg) METER (mr	n)	-90 80	DRILL LOGG	ED BY ED BY		IG D.	SL O'Shea	1
Downhole Depth (m) Core Run Depth (m) T.C.R.% S.C.R.% R.Q.D.%	racture pacing Zou Log tracture (mm)			Descriptio	on			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
0 1 1 1 1 1 2 1 1 3 100 31 14 5 5.70 100 91 6 100 95 91 7 7.20 100 100 93 9 100 100 100 100 9 100 100 100 100		SYMMET as clayey SYMMET as sandy SYMMET as sandy + SYMMET as greenis + Very stror green/gre coarse-gr weathered + Dips are 2 medium s Apertures + Apertures + Apertures + 4.20-5.30 + + + + + + + + + + + + + + + + + + +	RIX DRILLII gravelly cot RIX DRILLII gravelly clay RIX DRILLII sh grey wea ing to strong, y/white mot ained, GRA d. 20° to locally paced, roug are tight to m - Modera	NG: No reco obles NG: No reco y with occasi NG: No reco thered rock thickly to th tled, porphyr NITE, fresh y 80°. Discor gh to locally s partly open, tely weather	very, obse ional cobb ional cobb itic, mediu to locally n smooth, pl very thin ed, slight	erved by dri erved by dri les erved by dri ad, light um to moderately are widely to lanar. brown clay weakening.	ller ller	2.80	24.13 23.23 22.73		
REMARKS Hole cased 0.00-4.20m.			Water	Casing S	Sealed	Rise	Time	WAT Co	rer S1 mmen	RIKE D	ETAILS
963.GPJ 163L.GL			STRIKE	Deptn	At	10	(min)	N	o wate	r strike	recorded
5 2 2				Hala	Cooina	Dentil		GRC	DUNDV	VATER	DETAILS
실 INSTALLATION DETAILS			Date	Depth	Depth	Depth to Water	Com	ments	S		
Date Tip Depth RZ To 24-02-16 5.50 3.50	op RZ Base) 5.70 50	Type mm SP	-								

REPORT NUMBER

	ອອ 																	
СО	NTR	АСТ	N	l6 Ga	alway City	[,] Transpo	ort Pro	oject -	Phase 3				DRIL SHEE	LHOLE Et	NO	BH: Shee	3/23R et 2 of	2
CO GR	ORI	DINA [.] ID LE	TES EVEL	(mO	527,77 727,34 D)	3.63 E 6.05 N 26.93			RIG TYPE			Casagrar Air/Mist	DATE	DRILL	ED ED	24/0 24/0	2/2016 2/2016	3 3
CLI	ENT SINE	ER	G	alwa RUP	ay County	Council		1	INCLINATI	ON (deg) METER (mi	n)	-90 80	DRIL LOG	LED BY GED BY	((IG D.	SL O'She	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	ture cing bg m) 500	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10	10.20)						++	End	of Borehole	at 10.20 n	า			10.20	16.73		
11																		
12																		
13																		
14																		
15																		
16																		
17																		
- 18 - 18 																		
- 19 - 19 																		
RE	MAR	KS	I	I	I			1	I						WA	TER ST	RIKE	DETAILS
Hol	e ca	sed (0.00-4	4.20r	n.					Water Strike	Casing Depth	Sealed At	Rise To	l'ime (min)	Co	ommen	ts	
															N	lo wate	er strike	e recorded
	- • •		<u></u>								Hole	Casing	Denth to		GRO	OUNDV	VATER	RDETAILS
INS	NSTALLATION DETAILS Date Tip Depth RZ Top RZ Base								be	Date	Depth	Depth	Water	Corr	nment	S		
24	-02-1	16	5.5	0	3.50	5.70	-	50mn	n SP									

REPORT NUMBER

СС	NTR	ACT	N	6 Ga	alway City	Transpo	ort Pro	oject -	Phase 3				DRIL SHE	LHOLE ET	NO	BH: Shee	3/25R et 1 of	2
CC GR		DINA [.]	TES VEL	(mO	528,73 727,83 D)	4.81 E 3.14 N 12.85			RIG TYPE FLUSH			Comacch Air/Mist	nio DAT	e drill E logg	.ED iED	26/0 29/0	2/2016 2/2016	3 3
CL	IENT GINE	ER	G A	ialwa RUP	ay County	Council			INCLINATI	ON (deg) METER (m	m)	-90 80	DRIL LOG	LED B GED B	Y Y	IG D.	SL O'She	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	ture cing bg m)	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
	4.10 5.10 6.70 8.30 9.90	100	100 93 100	100 73 100			940 		SYMMETI as made g SYMMETI as weathe Very stron grained, L and styloli Dips are 2 medium saj Apertures smearing.	RIX DRILLI ground con	NG: No rec sisting of S NG: No rec thinly bedd E (locally fo to slightly w y 40°. Disc gh to locally o partly ope	covery, obs hell & Aug covery, obs ed, blueish ssiliferous /eathered. ontinuities / smooth, p n, very thir	served by c er material served by c dark grey , localized are widely olanar. b brown cla	Iriller fine chert to y	3.80	9.05		
74/6/	MAR	KS										0	<u> </u>		WA	TER ST	RIKE	DETAILS
Ho	le ca	sed (0.00-4	4.10r	n. –					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	mmen	ts	
3963.GPJ IGSL.G										Suike	Берш	AL	10	(11011)	N	lo wate	r strike	e recorded
¥			<u></u>								Hole	Casing	Depth t		GRO	JUNDV	VATER	DETAILS
2 INS	STAL	LATI	ON D	ETA	ILS					Date	Depth	Depth	Water	Con	nment	S		
IGSL RC	Date	1	ip D	epth	RZ Top	RZ Base		Тур	De									

REPORT NUMBER

	<u>دی</u>	<u> </u>																
СО	NTR	АСТ	N	6 Ga	alway City	Transpo	rt Pro	oject -	Phase 3				DRIL SHE	LHOLE ET	NO	BH: She	3/25R et 2 of	2
CO GR	-ore oun	DINA [.] D LE	tes Vel	(mO	528,73 727,83 D)	4.81 E 3.14 N 12.85			RIG TYPE FLUSH			Comacch Air/Mist	io DATI	e drill E logg	ED ED	26/0 29/0	2/2016 2/2016	5 5
CL EN	ENT GINE	ER	G A	ialwa RUP	ay County	Council		I	INCLINATI	ON (deg) METER (mr	n)	-90 80	DRIL LOG	LED BY GED BY	((IG D.	SL . O'She	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	ture cing og m) 500	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10	10.30	100	100	100					End	of Borobolo	ot 10 20 r	2			10.30	2.55		
- 11											at 10.001							
12																		
13																		
- 14																		
15																		
16																		
17																		
18																		
- 19																		
RE	MAR	KS	I	I	1			I	1						WA	TER S	RIKE	DETAILS
Ho	e ca	sed (0.00-4	4.10	m		_	_	_	Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	mmen	ts	
															N	lo wate	er strike	e recorded
											I				GRO	OUND	VATER	RDETAILS
INS	TAL Date		ON D Tip D	ETA epth	ILS RZ Top	RZ Base	•	Ту	De	Date 29-02-16	Hole Depth 10.30	Casing Depth 4.10	Depth to Water 9.60	Con Water drillin	nment [.] level m	S leasured	10 mins a	after end of

GEOTECHNICAL BORING RECORD

REPORT NUMBER

	\bigcirc													
со	NTRAC	r N6	Galway Cit	y Transport	Project - Phase 3						BOREHO SHEET	DLE NO.	BH3/54 Sheet 1 of 1	
CO GR	-ordin Ound L	ATES .EVEL (n	528,6 727,7 n AOD)	01.86 E 56.28 N 8.05	RIG TYP BOREH BOREH	'e Ole diam Ole dept	ETER (m H (m)	nm)	Dando 30 3.70	000	DATE CO DATE CO	OMMEN OMPLET	CED30/03/2016TED31/03/2016	
CLI	ENT GINEER	Gal ARI	way Count JP	y Council	SPT HA	MMER RE	F. NO. ()				BORED I PROCES	BY SED BY	WC / JL	
							<i>-,</i>			San	nples	_		
Depth (m)			Des	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
- 0	TOPS	OIL with	BOULDER	S (Possible	MADE GROUND)	<u>11</u> . <u>11</u> . <u>11</u> . <u>11</u>								
	Stiff da	irk and lig	ght brown s	andy gravel	ly CLAY with a		7.35	0.70	AA9	В	0.50		N = 40	
- 1	mediui			er content					AA10	В	1.00-1.45	5	(6, 9, 12, 14, 8, 6)	
- 2									AA11	В	2.00-2.45	5	N = 49 (5, 7, 8, 11, 14, 16)	
- 3									AA12	в	3.00-3.45	5	N = 50/200 mm (3, 4, 6, 17, 27)	
	End of	Borehol	e at 3.70 m			<u>ð.</u>	4.35	3.70	-					
4														
- 5														
6														
7														
- 8														
9														
HA	ARD STR	RATA BO	DRING/CHI	SELLING								W	ATER STRIKE DET	AILS
Fror	n (m)	To (m)	lime (h)	Comments		Wate Strike	er Ca e De	sing pth	Sealed At	Ris To	e Ti (n	me nin) C	Comments	
3	5.7	3.7	0.75										No water strike	
							I	I			I	GRO	OUNDWATER PRO	GRESS
INS	TALLA		TAILS			Dat	e ,	Hole	Casing	De	pth to	Commer	nts	
	Date	Tip Dep	oth RZ Top	RZ Base	Туре			Jepth						
REI	MARKS	1.0hr ge	etting plant	and equipme	ent to borehole loca	ation		Samp D - Small B - Bulk E	Disturbed (tub) Disturbed (tub)	d d		UT - Ur Sample	ndisturbed 100mm Diameter e isturbed Piston Samolo	
<u> </u>								Env - Env	e Buik Disturbe vironmental San	u nple (Jar + \	Vial + Tub)	W - Wa	ater Sample	

REPORT NUMBER

1		7																	
со	NTR	ACT	N	6 Ga	lway City	Transpo	rt Pro	ject -	Phase 3				DF SF	RILLH	IOLE I	NO	BH3 Shee	3/54R et 1 of	2
CO GR	-ORE	DINA [.] D LE	TES	(mOl	528,60 ⁻ 727,755 D)	1.20 E 7.95 N 8.29			RIG TYPE			Casagra Air/Mist	nde DA	ATE D	RILLE	ED ED	31/0 01/0	3/2016 4/2016	6
CL	IENT		G	ialwa	y County	Council			INCLINATIO	ON (deg)		-90	DF	RILLE	DBY		IG	SL	
EN	GINE	ER	A	RUP					CORE DIA	METER (mi	m)	80	LC	DGGE	DBY		D.	O'She	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spac Lo (mi	ture cing vg m)	Non-intact Zone	Legend			Descript	ion				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 1								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SYMMETF as gravelly SYMMETF as sandy (RIX DRILLI y clay RIX DRILLI gravelly cla	NG: No rec NG: No rec y with occa	overy, obs overy, obs sional cob	served b	y drille y drille	er er	1.20	7.09		
3	4 20							SYMMETRIX DRILLING: No recovery, observed by driller as weathered rock 3.20 5.09 Medium strong to very strong, thick to thinly bedded, blueish dark grey fine grained LIMESTONE (locally 4.09											
- 5	5.70	100	94	94				4.20 4.09											
- 6	7.20	100	97	97			10		Apertures smearing. 6.11-6.35r	are tight to n - Clay-fill	ed fracture	ı, very thir	(WOTO I	ciay					
- 8	8.70	100	99	99		9	60												
9		100	99	99		7	70.0000												
RE Ho	MAR le car	KS sed ().00-4	1.20r	n.					Water	Casing	Sealed	Rise	г	Fime		ER ST	RIKE	DETAILS
										Strike	Depth	At	To		min)	N	o wate	ts er strike	e recorded
	Тлі	1 6 71	ם אט	ET V						Data	Hole	Casing	Dept	n to	Com	GRC		VATER	
Date Tip Depth RZ Top RZ Base Type									e		Depth	Depth	Wat	er	COIII	ments	>		
3							1												

REPORT NUMBER

	<u>ຍຍ</u>	<u> </u>																
CON	NTR/	аст	N	6 Ga	alway City	Transpo	rt Pro	oject -	Phase 3				DR SH	illhoi Eet	LE NO	BH: She	3/54R et 2 of	2
CO-	ORE	DINA [.] D LE	TES VEL	(mO	528,60 727,75 D)	1.20 E 7.95 N 8.29			RIG TYPE FLUSH			Casagra Air/Mist	nde DA	te drii Te log	LLED GGED	31/0 01/0	3/2016 4/2016	6 6
CLIE ENG	ENT	ER	G A	ialwa RUP	ay County	Council			INCLINATI CORE DIA	ION (deg) METER (m	m)	-90 80	DR LO	illed Gged	BY BY	IG D	SL . O'She	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lo (m	ture cing 0g m) 500	Non-intact Zone	Legend			Descrip	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
10 1	0.20	100	92	92			500 550 539.99999 599.99999		Medium s blueish da fossilifero weathered Dips are 2 to mediun Apertures smearing. 11.25-11.	strong to ve ark grey, fin us, localize d. 20° to locall n spaced, r are tight to <i>(continuec</i> 40m - Clay	ry strong, tł e grained, d chert and y 40° & 80° ough to loc o partly ope <i>I</i> -filled fractu	hick to thin LIMESTOI I stylolites) 2. Discontir ally smootl n, very thir Ire	ly beddec NE (locall , slightly nuities are n, planar. n brown c	I, y e widely lay	y			
- - - - - - - - - - - - - - - - - - -	3.20 4.20	100	100	100	-		430											
15 <u>1</u> 16 17 17 18 18									End	of Borehole	e at 15.20 n	ז			15.20	0 -6.91		
REN	IAR	KS			1				1				_	-	WA	TER ST	RIKE	DETAILS
Hole	e cas	sed ().00-4	4.20r	m					Water Strike	Casing Depth	Sealed At	Rise To	Tim (mi	ne Co	No wate	ts er strike	e recorded
INST	STALLATION DETAILS									Date	Hole	Casing	Depth	to Co	omment	ts	WAIER	DETAILS
	Date Tip Depth RZ Top RZ Base							Тур)e		Depth	Depth	vvate					
						I	1			1	1		1					

GEOTECHNICAL BORING RECORD

REPORT NUMBER

1	\square															
CO	NTRAC	T NG	6 Ga	lway City	Transport	Project - F	Phase 3						BOREHO SHEET		D. BH3/25 Sheet 1 of 1	
CO GR	-ORDIN OUND I	ATES _EVEL (m A	528,732 727,834 OD)	2.55 E 4.69 N 12.60		RIG TYP BOREH BOREH	Pe Ole diam Ole dept	ETER (n H (m)	nm)	Dando 30 3.80	00	DATE C	ommei omple	NCED 01/02/2016 TED 01/02/2016	
CLI	ENT GINEER	Ga	alwa RUP	y County	Council		SPT HA ENERG	MMER REI Y RATIO (%	F. NO. 6)				BORED PROCES	BY SSED B	WC JL	
										\sim		San	nples			
Depth (m				Desc	ription			Legend	Elevation	Depth (m	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0	Grave		SOIL					<u></u>	10.00	0.00						
-	Firm li	ght grey	brov	wn sandy	gravelly C	LAY			12.30	0.30	 AA43893	в	0.50-1.00	D		
1									11.00	1.60	AA43894	В	1.00-1.45	5	N = 16 (3, 3, 4, 3, 4, 5)	
2	Firm b silty C	ecomin LAY. Gr	g firn avel	n to stiff li is angula	ght brown Ir.	sandy gra	avelly				AA43895	в	2.00-2.45	5	N = 18 (4, 4, 3, 4, 5, 6)	
3									- - -		AA43896	в	3.00-3.45	5	N = 20 (3, 3, 4, 4, 4, 8)	
- 4	Obstru End of	uction f Boreho	ole at	t 3.80 m				- <u>×</u> <u>-</u> ×_	8.80	3.80	-					
-																
- 5																
- 6																
· · · ·																
1																
8																
- 9																
-																
HA	RD ST	RATA B	ORI	NG/CHIS	ELLING								·	v	VATER STRIKE DET	TAILS
Fror	n (m)	To (m)		ime Co	omments			Wate Strike	er Ca	sing	Sealed At	Ris		ime	Comments	
3	.7	3.8	0	.75							, u	10			No water strike	
										I			I	GF	ROUNDWATER PRO	GRESS
INS	TALLA	TION DI	ETA	ILS				Dat	e	Hole	Casing	De	pth to	Comme	ents	
	Date	Tip De	pth	RZ Top	RZ Base	Ту	ре			Depth						
RE	MARKS	Boreho follow-	ole b on c	ackfilled u oring.	upon comp	letion. Bo	rehole scl	neduled for	rotary	Samp D - Small B - Bulk D LB - Larg	Disturbed (tub) Disturbed e Bulk Disturbed		(fol) Total	UT - Sam P - U	Undisturbed 100mm Diameter ple Indisturbed Piston Sample	
										Env - Env	/ironmental Sam	pie (Jar + \	vial + Tub)	VV - \	water Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

/	\bigcirc														
со	NTRACI	N6 (Galway Cit	y Transport	Project - Pha	ase 3						BOREH	OLE NO	D. BH3/27 Sheet 1 of	1
CO GR	-ordin#	ATES EVEL (m	528,9 728,1 AOD)	60.51 E 30.68 N 8.94	R B B	ig typi oreho oreho	e Dle Diame Dle Depti	ETER (n H (m)	n m)	Dando 30 1.40	000	DATE C DATE C	OMME	NCED 17/02/2016 ETED 18/02/2016	;
	IENT GINEER	Gal	way Count	y Council	SI	PT HAN NERGY	MER REF RATIO (%	F. NO.				BORED	BY SSED B	WC BY JL	
								,	~		Sar	nples		-	
Depth (m)			Des	scription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0	Soft da	rk brown	sandy gra	velly CLAY			<u></u>	0.54	0.40						
- 1	Firm lig cobble	ht brown and boul	sandy gra der conten	ivelly CLAY t	with a mediu	ım		0.04	0.40	AA48872 AA48873	B	0.50	5	N = 50/180 mm (2, 2, 4, 8, 38)	
- 2 - 3	Obstru End of	ction Borehole	e at 1.40 m												
9															
HA	ARD STR		RING/CHI	SELLING			10/-4		oine	Cocle-!	D:		V	VATER STRIKE DE	TAILS
Fror	m (m) T	o (m)	(h)	Comments			Strike	e De	epth	At	KIS To	be I D (r	nin)	Comments	
1	1.4	1.4	0.5											No water strike	
										Casia	-		GF	ROUNDWATER PR	OGRESS
INS	TALLAT	ION DE	TAILS				Date	e	Hole Depth	Casing Depth	De V	epth to Vater	Comme	ents	
	Date	Tip Dep	th RZ Top	RZ Base	Туре										
RE	MARKS	2.5hr ge used to track ma	tting rig on assist rig a achine from	to position t ccess / egre n field.	from BH3/21 ess from field	. Tracke I. 3hr rei	ed excavate moving rig	or and	D - Small B - Bulk D LB - Large Env - Env	le Legence Disturbed (tub) Disturbed e Bulk Disturbec ironmental Sam	d iple (Jar +	Vial + Tub)	UT - Sam P - L W - 1	Undisturbed 100mm Diameter iple Jndisturbed Piston Sample Water Sample	

REPORT NUMBER

1		7																	
со	NTR	ACT	N	l6 Ga	alway City	r Transpo	rt Pro	oject -	Phase 3				Di Si	RILLH HEET	OLEI	NO	BH: Shee	3/27R et 1 of	2
CO GR		DINA D LE	TES EVEL	(mO	528,960 728,133 D)	0.43 E 3.26 N 9.10			RIG TYPE FLUSH			Casagraı Air/Mist	nde D/	ATE DI Ate Lo	RILLE OGGE	ED ED	12/0 13/0	4/2016 4/2016	6 6
CL EN	IENT GINE	ER	G A	alwa RUP	ay County	Council			INCLINATION	ON (deg) METER (mi	n)	-90 80	Di	RILLE DGGE	D BY D BY		IG D.	SL O'She	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	ture cing 9g m) 0 500	Non-intact Zone	Legend			Descripti	on				Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 0	1.00								SYMMETI as clay SYMMETI as weathe	RIX DRILLI RIX DRILLI red rock	NG: No reco NG: No reco	overy, obs	erved b	y drille y drille	ər ər	<u>0.80</u> 1.00	8.30 8.10		
2	0.50	93	93	93		1	350		blueish da fossiliferou weathered Dips are 2	trong to ver irk grey, fin us, localize 1. 20° to locall	y strong, the e grained, L d chert and y 40° & 80°.	Discontir	y bedde NE (loca , slightly	a, Ily re wide	elv				
3	2.50	100	87	87			130		to medium Apertures smearing. 2.90-3.00r	n spaced, ro are tight to m - Clay-fill	.,								
- 4	5.00	100	84	64					4.31-4.53	n - Clay-fill	ed fracture								
- 6	6.00	100	85	76	E.	-	20		5.72-5.86	n - Clay-fill	ed fracture								
7	7.00	100	91	82					6.36-6.51r 6.97-7.32r	m - Clay-fill m - Clay-fill	ed fracture ed fracture								
	8.00	90	75	70		1	080			·									
	9.00	100	80	30					8.59-8.71r	m - Clay-fill	ed fracture								
		20	20	20		-			9.24-11.0	ōm - Clay-fi	lled fracture	1							
	MAR	KS	0.00	1.00	~					Wator	Casing	Saalad	Pico	T	ime	WAT	ER ST	RIKE	DETAILS
Ho	ie ca:	sed (U.00- ⁻	1.00r	n.					Strike	Depth	At	To	(r	min)	Co N GRC	mmen o wate	ts er strike VATEF	e recorded
	STAL	LATI		ET₽	ILS					Date	Hole	Casing	Dept	n to	Com	mente	3		
Date Tip Depth RZ Top RZ Base Type								De		Depth	Depth	Wat	er			-			
∠∟_												1	1						

/	A														RE	EPORT		BER
	<i>£7</i>]]GS	بر ئ			C	GEOT	ECł	HNIC	CAL COP	RE LOG	RECO	RD				1	896	3
С	ONTR	ACT	- N	16 Ga	alway City	/ Transpo	ort Pr	oject -	Phase 3				DRILL	HOLE I	NO	BH3 Shee	3/27R	2
CO	D-ORI	DINA	ATES EVEL	(mO	528,96 728,13 D)	0.43 E 3.26 N 9.10						Casagran	de DATE	DRILLE LOGGE	D D	12/04 13/04	4/2016 4/2016	2 } }
CL		ER	G	Balwa	ay County	Council				ON (deg) METER (mn	n)	-90 80		ED BY		IG D	SL O'She	28
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lo (m	cture cing og m)	Non-intact Zone	Legend			Descript	on			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
- 10	10.50	92	58	58														
	11.80						750		-					1	1.80	-2.70		
	5 5 7 8																	
- Ho	ole ca	sed	0.00-	1.00	m.					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co	mment	ts	
00.GFJ 1GOL															N	o wate	er strike	e recorded
M 189											Holo	Casing	Donth to		GRC	DUNDV	VATER	RDETAILS
	STAL Date	LAT	Tip D	PETA epth	ILS RZ Top	RZ Bas	e	Ту	De	Date	Depth	Depth	Water	Comr	ments	5		
IGSI																		

IRISH DRILLING LTD. LOUGHREA, CO. GALWAY Telephone: 091 841274 Fax: 091 847687

DRILLHOLE LOG

Project											I	ORILLH	OLE	No
1	N6 Gal	way City	Outer B	ypass			-	24				RC 9	59	Δ
Job No			Date 21-	-11-06	Ground Leve	d (m)	Co-Ordinat	es ()		002.0				
Contrac	rtor		21-	-11-06	6.0)/	E 129	,030.8	5 N 228,	,002.9	SI	heet	1	
I	IDL											neer	of 1	
RU	N DET	CAILS				S	TRATA							nt/
Denth	TCR	(SPT)	Red'ed	Dep	th	-	DESC	CRIPT	ION				logy	ume
Date	(SCR) RQD	Fracture Spacing	Level	Legend (Thick ness)	- Discontinu	ities	Detai	1		Main			Geo	Instr Bacl
0.00	43 (-)		<u>5.17</u> 4.97	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 - 5.30 50 70			Sut CO Dar	orounded li BBLES. rk grey ang	mestone G gular to sub	angula	EL &		
2.00	25 (-)	NA		0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)			Sut CO	estone coa prounded li BBLES.	rse grained mestone G	<u>GRA</u> RAVI	VEL/ EL &		
5.00	93 (-) -			00.00.00 00.00 00.00 00 00 00 00	20									
6.50	100 (39) 0		1.37		5.30 - 8.00 Possible weathered rock or boulders.			We as v lim	Weathered LIMESTONE. Recovered as very strong slightly weathered grey limestone gravel cobbles and boulders.			covered red grey poulders.		
8.00	100 (66) 44	NI	-1.33		00									
								BH Ins	I terminate truction.	d at 8.0m b	ogl on	RE's		
	Dri	lling Pro	gress and	d Water Obs	ervations		R	lotary	Flush			GENE	RAL	
Date	Ti	ne Dep	oth Dept	Casing Dia	ore Dia Strike	Water e Standing	From	To	Туре	Returns	Bore	REMA chole back ent benton	RKS filled v ite grou	vith ut.
All dim m Scale	ensions etres e 1:62.5	in Client	Galway (County Cour	ncil	Method Plant Us	Count	y Tract	tor	Bit H Design	IQ	Logged I	^{3y} EAT	

Trial Pit Log

Logged by DJB Checked by ROR	Start 15/10/2003 End 15/10/2003	Equipment, Method Excavated using a JC	is and Remarks 3	Dimensions and Orientation Width 0.80 m A Length 2.50 m C	Ground Level +7.22 mOD Coordinates E 129009.49 National Grid N 228047.30
Samples a	nd Tests	;	Strata		
Depth	Type & No.	Date		Description	Depth, Level Legend Backfill/
- 0.10	D 1	Records	1 MADE GROUND: Firm brown slightly s gravelly fibrous CLAY with rare brick fra	andy slightly agments.	
- - - 0.50 - 0.50-0.80	D 2 B 3		Gravel is subangular to rounded fine to Very stiff grey slightly sandy slightly gra with many cobbles. Gravel is subangular fine to coarse. Cobbles are subangular	coarse. avelly CLAY ar to angular of limestone.	
0.50-0.80	B 4				0.80 +6.42
					-
Depth	Type & No.	Records			
Groundwater Entri No. Struck Post Stril (m) None observed (see	es ke Behaviour Key Sheet)	Date	Depth Related Remarks From to (m) 0.80 Trail pit terminated due to obstruct	on - presumed bedrock.	Stability Good Shoring None Weather
Votes: For explanation abbreviations see key evels in metres. Stratu n depth column. Scale 1:25	of symbols and sheet. All depths im thickness give c) MESG HBIII (296), 1	602/2004 11:47:42	Project N6 Galway City Outer Byg Investigation Gortatleva to Project No. KC3210 Carried out for Galway County Council	ass Contract 2 Ground Menlough	Trial Pit TP127A Sheet 1 of 1

Trial Pit Log

Logged by DB Checked by ROR	Start 07/11/2003 End 07/11/2003	Equipment, Metho Excavated using a JO	ds and Remarks B	Dimensions and Orientation Width 0.90 m A Length 3.20 m C	272 (Deg)	Ground Level Coordinates National Grid	+8. E 12 N 22	28 mOD 9058.83 7961.17
Samples a	and Tests	5	Strata					
Depth	Type & No.	Date		Description		Depth, Level	Legend	Backfill/
- 0.10	D 1	Records	1 TOPSOIL: Brown slightly gravelly CLA' roots. Gravel is subangular to subround	/ with many ed fine to		(Thickness) 0.10 +8.18		nstrumen
- 0.50 - 0.50-1.00 - 0.50-1.00 	D 2 B 3 B 4		Coarse. Stiff brown slightly sandy gravelly CLAN cobbles and boulders. Gravel is subang subrounded fine to coarse. Cobbles an subangular to subrounded of limestone up to 1100mm in length.	/ with many ular to d boulders are Boulders are		(1.10)		
-			3 Weathered LIMESTONE: Recovered as many cobbles. Gravel is angular to sub coarse. Cobbles are angular to subange	s grey GRAVEL with angular fine to Jlar of		1.20 +7. <i>08</i> (0.30)		
-			IIMESTONE. EXPLORATORY HOLE ENDS A	r 1.50 m		1.50 +6.78		
Depth	Type & No.	Records						
Depth	Type & No.	Date						
Groundwater Entrie No. Struck Post Strik (m) None observed (see)	es e Behaviour Key Sheet)		Depth Related Remarks From to (m) 1.50 Trial pit terminated due to obstruction - presumed bedrock.			Stability Good Shoring None Weather		
totes: For explanation bbreviations see key s vels in metres. Stratu i depth column. cale 1:25 (a	of symbols and sheet, All depths m thickness give	and reduced in in brackets	Project N6 Galway City Outer Byp Investigation Gortatleva to KC3210 Carried out for Galway County Council	ass Contract 2 Ground Menlough		Trial Pit TP Shee	127B et 1 of 1	

TRIAL PIT LOG

Project	TRIAL PIT No						TRIAL PIT No		
N6 Galv	way City Outer Bypa	ass	a					_	TP 958
JOD NO	Date 14-11	-06	Ground Lev	vel (m)	Co-Ordinates ()	< N 22	0.10.2		
Contractor	14-11	-00	0	.33 GROUNDWATE	R Water strikes: R	.0 IN ZZ2 ose to (@ 20 m	5,018.3 iin.): Sealed a	t: Sh	eet
IDL				STRIKES	1st: 1.50m 2nd: 3rd:				1 of 1
	A	B		C	3rd:	D	0		
4		STI	RATA				4 5 5	AMPI	LES & TESTS
Depth No	DESCRIPTION In Situ Tests Water Depth (m						(m) N	lo Remarks/Tests	
0.30-1.50	TOPSOIL - soft dark brown peaty clay. Image: Case of the set of					3			
Shoring/Supp	orf:								GENERAL
Stability:	urt.							Pit st excav	able during ration.Slight inflow at
	3.6							1.50n	i depth.
All dimensions in metres Scale 1:62.5	ⁿ Client Galway Cou	inty Counci	1	Method Plant U	Hitachi ex12	20	Bit Design		Logged By DK

IDL AGS3 UK TP GALWAYBYPASSN6TPSLAB1 GPJ AGS 3 1.GDT 30/01/07

Г

IRISH DRILLING LTD. LOUGHREA, CO. GALWAY Telephone: 091 841274 Fax: 091 847687

TRIAL PIT LOG

Project							T	RIAL PIT No
N6 Galv	way City Outer Bypass			12 2 4 2			_	TP 1435
Job No	Date 14-11-00	6 Ground	Level (m)	Co-Ordinates ()				11 1400
Contractor	14-11-06		6.24	E 129,001.	/ N 227, ose to (@ 20 min	958.5 .): Sealed at:	Char	
IDI			STRIKES	1st: 2.50m 2nd:			Shee	
		D		3rd:	D			
	A	B	C		D	0 1 1 2 3		Legend <u> <u> <u> </u> <u> </u></u></u>
5		STRATA			1	SA	MPL	ES & TESTS
Depth No	DESCRIPTION In Situ Water Depth (m							Remarks/Tests
0.00-3.00 3.00 3.00	Soft light brown fibrous P Pit abandoned - constant o	EAT with many ro	s.			1.00 1.00 2.00 2.00	B J J	
Shoring/Supp Stability:	port:						1	GENERAL REMARKS
							Pit unst excava sides.W 2.50m.	table during tion.Collapsing of Vater seepage at
ö All dimensions i metres Scale 1:62.5	ⁿ Client Galway Count	y Council	Metho Plant U	d/ Hitachi ex12 Jsed	20	Bit Design	L	logged By DK

etrometer
etrometer
etrometer
etrometer
etrometer
land Pen
<u> </u>

Appendix C

Hydrology Assessment for OPW Section 50 Approval

N6 Galway City Transport Project

Hydrology Assessment For OPW Section 50 Approval Of proposed watercourse culverts

Report No. HEL209001_v1.1

Galway County Council NRDO

July 2017

N6 Galway City Transport Project

Hydrology Assessment For OPW Section 50 Approval Of proposed watercourse culverts

on behalf of

Galway Co. Council NRDO

Job No.:209001Report No.:HEL209001Prepared by:Anthony Cawley BE, M.EngSc, CEng MIEIApproved by:Anthony Cawley BE, M.EngSc, CEng MIEIDate:07th July 2017

© Hydro Environmental Ltd 2016

DISCLAIMER

This report has been prepared solely as a report for the N6 Galway Transport Study in respect to the proposed Galway City Ring Road. Hydro Environmental Ltd accept no responsibility or liability for any use that is made of this document other than by the client for the purposes for which it was originally commissioned.

Contents

1.	Introduction	1
2.	Culverts	1
3.	Road Drainage Outfalls	. 4
4.	Design Flows	. 7
D	escription	. 7
IF	I-124 Flood Estimation Method	. 7
F	lood Study Update (FSU) Method	. 8
R	ecommended Design Flow	13
5.	Hydraulic Model Analysis	14
6.	Conclusions	16

Appendix 1 - OPW Section 50 Culvert applications Appendix 2 - Section 50 Supporting Drawings of Culverts

1. INTRODUCTION

The proposed N6 Galway City Ring Road (GCRR) runs from the existing M6 at Coolagh on the east side of the city, passing to the north of the city and eventually joining with the R336 Coast Road, west of Bearna Village. The proposed route lies within hydrometric Areas 30 and 31. The proposed road intercepts a number of watercourses to the west of the River Corrib which will require culverting. To the east of the River Corrib due to the highly karst nature of the terrain there is a very sparse network of surface drainage channels and streams with rainwater generally infiltrating to ground through the porous karstified limestone bedrock rather than running off. As a consequence only one dry ditch was noted as being intercepted near the Coolagh lakes complex to the east of the River Corrib. Whereas, to the west of the River Corrib the bedrock and quaternary changes to a more impervious type resulting in a much higher density of surface water features with little ability for rainwater to infiltrate to groundwater. This gives rise to wetter conditions with peatlands and marshy areas common.

2. CULVERTS

Excluding the River Corrib there are a total of 16 stream culvert sites proposed, 15 culverts in the western section and 1 in the eastern section. The catchment areas of these watercourses is generally very small ranging from a number of hectares to the largest crossing of the Bearna River with a catchment area of 5.5 km². The majority of these watercourses flow in a general southerly direction discharging to Galway Bay with watercourses from the Bearna Stream east discharging to the Galway Bay SAC and watercourses west of the Bearna Stream to Galway Bay outside of the SAC.

The general guidelines provided by the OPW in respect to culverts and sizing of such have been applied to this study and generally as per the guidance whether required or not the minimum size exceeds 900 mm diameter pipe equivalent. This sizing avoids maintenance issues for small streams and drainage channel crossings and the obstruction of such by debris or silt build-up.

The catchment sizes involved are considered to represent very small catchments in terms of flood estimation and appropriate estimation methods for such small catchments have been used which include the IH 124 method and the recent OPW FSU method. As part of the ground survey for this road project a topographical survey of the drainage channels was carried out and this data is used in selection of the appropriate inverts both upstream and downstream and in assessing the capacity and hydraulic profile of the culvert under design flood conditions. Figure 1 presents a general location map of the proposed culverts labelled 1 to 17 (note reference 11 represents a channel long diversion of the Tonabrocky Stream). Figure 2 presents the estimated catchment areas for these culverts. It can be seen from Figure 2 that these catchments are generally to the north of the urban area and generally represent rural catchments.

Ref	N6 GCRR Ref	х	Y	Cat Area	Qdesign	Culvert type	Length
1	C00/01	521324.58	723181.58	0.47	1.26	box 2.5m by 1.35	94.4
2	C00/02	521521.68	723446.01	0.324	0.89	1.2m diameter	46.1
3	C01/01	521983.64	723778.87	0.06	0.09	1.2m diameter	27.6
4	C02/01a	523086.54	724283.58	1.192	1.63	box 2.1m by 1.8m	36.66
5	C02/01b	523179.61	724198.04	1.192	1.63	box 2.5m by 2.5m	68.2
6	C03/01	523354.16	724244.47	0.08	0.12	box 2.5m by 1.2m	47.7
7	C03/02	523615.65	724390.32	0.15	0.23	0.9m diameter	15
8	C03/03 C03/04	524066.24 & 524079.03	724705.91 & 724722.20	0.692	1.09	box 2.5m by 2.5m box 2.5m by 2.5m	53.4 51.7
9	C04/01	524201.84	724845.74	5.485	7.58	box 5m by 2.5	34.9
10	C04/02	524895.00	725274.42	1.652	2.13	box 3.1m by 2.5	80.4
11	Channel Diversion	524918.98 525096.21	725303.36 725475.14	1.517	1.97	1.5m base width, 1:2 side slopes and 1.5m depth	250m
12	C06/01	526420.87	726389.37	0.138	0.20	box 2.5m by 2.5m	64.8
13	C07/02B	526710.48	726684.02	0.209	0.30	1.2m diameter	14
14	C07/02A	526698.49	726637.16	0.209	0.30	box 2.5m by 2.5m	82.1
15	C08/01	527663.93	727211.93	0.159	0.23	1.2m diameter	82.5
16	C10/02	529687.79	728412.26	0.629	0.19	1.2m diameter	41.8
17	C07/01a	527147.52	726262.40	0.38	0.55	1.2m diameter	37.2

Table 1 Proposed Culvert Details

Ref	N6 GCRR	Buried	eff ht	u/s invert	d/s invert	u/s soffit	d/s soffit
	Ref	m	m	mOD	mOD	mOD	mOD
1	C00/01	0.30	1.05	32.99	30.9	34.34	32.25
2	C00/02	0.15	1.05	39.62	37.94	40.82	39.14
3	C01/01	0.15	1.05	48	46.82	49.20	48.02
4	C02/01a	0.30	1.5	39.73	39.04	41.53	40.84
5	C02/01b	0.30	2.2	38.48	37.25	40.98	39.75
6	C03/01	0.30	0.9	38.63	37.44	39.83	38.64
7	C03/02	0.00	0.9	36.83	36.58	37.73	37.48
8	C03/03	0.30	2.2	18.93	18.51	21.43	21.01
	C03/04	0.30	2.2	18.92	18.62	21.32	21.12
9	C04/01	0.30	2.2	21.17	20.69	23.67	23.19
10	C04/02	0.30	2.2	44.56	42.32	47.06	44.82
11	Diversion			50.1	45.9		
12	C06/01	0.30	2.2	53.6	51.69	56.1	54.19
13	C07/02B	0.15	1.05	57.84	57.65	59.04	58.85
14	C07/02A	0.30	2.2	56.88	55.79	59.38	58.29
15	C08/01	0.00	1.2	32.5	29.035	33.7	30.235
16	C10/02	0.15	1.05	11.58	11.3	12.78	12.5
17	C07/01a	0.15	1.05	35.89	35.57	37.09	36.77

 Table 2 Invert Levels for Proposed Culverts

Figure 1 Location Map of Culverts (note reference 11 represents a channel diversion to the northwest of alignment to achieve a single stream crossing at reference 10)

HYDRO ENVIRONMENTAL

Figure 2 Contributing catchment area of culverts

3. ROAD DRAINAGE OUTFALLS

The proposed road drainage has been developed generally in accordance with the NRA Design Manual for Roads and Bridges and in particular in accordance with the NRA Addendum to HD33/06 Surface and Sub-Surface Drainage Systems for Highways.

The principal objectives for national road drainage systems include: -

- To ensure the speedy removal of surface water in order to provide safe driving conditions;
- To provide effective sub-surface drainage to maximise longevity of the road pavement and associated earthworks;
- To minimise the impact of the runoff on the receiving environment; and
- To maintain, as far as possible, the road drainage to the outfall separate from other catchment drainage (including land drains) in the interest of pollution control.

The proposed drainage design for the project incorporates Sustainable Drainage Systems (SuDS) which are aimed at the provision of volumetric and quality control of storm water runoff. The proposal includes the provision of a series of constructed linear wetlands and attenuation basins at the outfall locations prior to discharge to the receiving environment. The proposed attenuation for all drainage networks has been designed to achieve estimated Greenfield flood run-off rates up to the 100 year return period event.

The Flood Study Report (NERC 1975) Soil Runoff Classification is type 2 having a Soil Factor of 0.3 or 30% standard percentage runoff rate for the granite areas west of the Corrib and soil type I for the Karst limestone area east of the Corrib. The SAAR (seasonal annual average rainfall) is typically 1200 to 1300 mm increasing westward. This represents an annual average flood run-off rate of 0.8 I/s per ha, 3.6 I/s per ha and 6.7I/s per ha at Soil types 1, 2 and 3 respectively. Attenuation storage is provided to achieve these greenfield runoff rates up to the 100 year return period storm event. These will be maintained systems and therefore are designed not to increase peak flood flow conditions in the receiving rivers and streams.

The proposed road drainage outfalls discharge to watercourses in the vicinity of culvert references 1, 2, 3, 4/5, 8, 9, 10, 12, 13, 14, 15 and 17. A number of these watercourses are very small and of low capacity and therefore stormwater management in terms of attenuation and control of road drainage discharges is critical to protecting downstream reaches from additional flooding. A summary of the relevant road outfalls are presented below in Table 3, all of which will be attenuated to greenfield flood runoff rates.

Table 3	Road	Outfall	Details	for	Proposed	Road
---------	------	---------	---------	-----	----------	------

Drainage Network Outfall Reference	Catchment Area (ha)	Receiving Water and culvert location	Greenfield Discharge Rate, Qbar (m3/s)	
S2	0.55	discharges Sruthán na Líbeirtí d/s of culvert 1	0.002	
\$3	2.31	discharges Sruthán na Líbeirtí d/s of culvert 2 and u/s of culvert 1	0.0083	
S4A	0.96	discharges to Trusky trib u/s of culvert 3	0.0035	
S5A	2.45	discharges to Trusky stream upstream of culvert ref 4 and 5	0.0088	
S7A	0.3	discharges to a minor drain d/s of culvert 6	0.0011	
S7B	2.94	Discharges to Bearna Stream tributary d/s of culvert 8	0.0106	
S8	0.42	discharges to Bearna Stream tributary downstream of 8	0.0015	
S9	1.75	discharges to Bearna Stream upstream of 9	0.0063	
S10	2.19	discharges to Tonabrooky Stream downstream of culvert 10	0.0079	
S12	3.15	Discharges to drain downstream of 12	0.0113	
S13	0.91	Discharges to drain upstream of culvert 13 and 14 culverts	0.0033	
S14A	5.66	Discharges to culvert downstream of culvert 15	0.0203	
\$16A	4.16	Discharges to storm sewer downstream of culvert 17	0.0149	

4. DESIGN FLOWS

Description

The Drainage Catchments for the proposed culvert crossings of the N6 Galway City Ring Road are very small at 0.06 to 5.49 km² (Berna Stream). Consequently none of these catchments are gauged for the purpose of flood estimation. Of the 17 catchments the following culvert references: 1 and 2 on the Scruthán na Libeirti Stream, 3 and 4 on the Trusky Stream (method includes Lough Inch and catchment within Trusky catchment which is incorrect), 8 and 9 on the Bearna stream, 10 on the Tonabrocky stream and 17 on the Rahoon stream are represented in the new Flood Study update FSU method on the OPW web portal site. The streams and the catchment areas and node estimation points are presented in Figures 4 to 8.

The FSU method uses as an index flood the Qmed (2 year return period flood or the median of the annual maxima series) value calculated by catchment descriptors and adjusted where an appropriate gauged site is available. The QMED estimate is multiplied up by the computed flood growth factor.

The other common method for flood estimation in small on gauged catchments is the use of the IH 124 equation using the SAAR, SOIL and catchment area parameters, obtained from the original FSR report or from more recent sources of meteorological information catchment mapping and site inspections to determine the run-off characteristics.

These methods are presented in the following sub-sections

IH-124 Flood Estimation Method

The mean annual maximum flood flow (Qbar) for each of the watercourse crossings listed have been estimated using The **Institute of Hydrology 3-variable equation** as follows:

$Q_{BAR} = 0.00100$ where	8 AREA ^{0.89} SAAR ^{1.17} SOIL ^{2.17}
Area	Catchment area in km ²
SOIL	Typical proportion of rain contributing to flood runoff, based on mapped soil types Type 2 (SOIL = 0.3)
SAAR	long term mean annual rainfall amount for the catchment,
Qbar	Calculated mean annual maximum flood in cumec.
Urban Factor (UF)	An index based on the % of the area covered by Urban Development
Standard Factorial Error (FE)	Factorial error from the regression equation: 1.65 for the IH-124 equation
CC	Climate Change Allowance +20%

The above method is combined with the Flood Study National Growth Curve to determine the 100year flood rate and the factorial error is included.

Culvert	Area	SAAR	SOIL	Qbar	Q100	Q100*FE*CC
Ref	km2	mm		cumec	cumec	cumec
1	0.47	1280	0.3	0.17	0.35	0.69
2	0.324	1280	0.3	0.12	0.24	0.48
3	0.06	1280	0.3	0.02	0.04	0.09
4	1.188	1301	0.3	0.41	0.82	1.63
5	1.192	1301	0.3	0.41	0.82	1.63
6	0.08	1300	0.3	0.03	0.06	0.12
7	0.15	1300	0.3	0.06	0.11	0.23
8	0.692	1310	0.3	0.25	0.51	1.01
9	5.485	1310	0.3	1.60	3.23	6.40
10	1.652	1253	0.3	0.52	1.05	2.09
11	1.517	1253	0.3	0.48	0.98	1.93
12	0.138	1251	0.3	0.05	0.10	0.20
13	0.209	1249	0.3	0.07	0.15	0.30
14	0.209	1249	0.3	0.07	0.15	0.30
15	0.159	1249	0.3	0.06	0.12	0.23
16	0.629	1235	0.15	0.05	0.10	0.19
17	0.380	1249	0.3	0.14	0.28	0.55

Table 4Design Flow Estimates using IH124 Equation at Culvert Crossings

 \overline{CC} = 1.2 and \overline{FE} = 1.65 and Growth factor X100 = Q100/QBAR = 2.04

The FSR national Growth factor for the 100year flood event is 1.96 and the FSU pooling group using the most hydrologically similar catchments producing 500station years gives a growth factor of 2.04. The higher growth factor is used in the 100year flood flow estimation.

Flood Study Update (FSU) Method

The new (2015) OPW Flood Study Update method uses physical catchment descriptors (PCD's) and pivotal site adjustment to determine the ungauged index flood magnitude (Qmed (Q2)) at nearest nodal point to the culvert location. The principal physical descriptors are AREA, BFISOIL, SAAR, FARL, DRAIND, S1085, ARTDRAIN2, URBEXT. The pivotal site is the FSU gauged flow station that is most relevant to the particular estimation location. For this particular application given the relatively small catchment areas involved the most hydrologically similar gauged catchment was a 10km2 catchment to the north of Dundalk. Given its remoteness to the subject area it was rejects and the FSU Qmed estimates were used without adjustment.

The FSU method used to determine the index flood (Qmed – median flood flow) is based on detailed catchment descriptors accessed via a GIS system on the FSU Web Portal Site and provides an option to use a gauged site as a donor / pivotable site to adjust the Qmed estimate as presented in the equations below.

 $Qmed (rural) = 1.237 \times 10^{-5} AREA^{0.937} BFIsoils^{-0.922} SAAR^{1.306} FARL^{2.217} DRAIND^{0.341} S1085^{-0.185} (1 + ARTDRAIN2)^{0.408}$

The urban Adjustment to the rural Qmed is defined as follows:

$$UAF = (1 + URBEXT)^{1.482}$$

$$Qmed (urban) = Qmed (rural) \times UAF$$

Adjusted QMED estimate using Donor/Analogue Catchment

$$Qmed^{s} = Qmed^{d} \left(\frac{Qmed^{s}(model \, rural)}{Qmed^{d}(model \, rural)} \right)$$

The FSU method determines the Flood growth curve through a pooled analysis of hydrologically similar catchments (Eulidean distance using the above PCD's and distance between catchment centroids). Multiplying the QMed estimate by the flood growth curve produced the return period peak flood flow magnitudes. The FSU Flood Hydrograph width method was also used to generate the return period design flood hydrographs at the various nodal points along the study reach. Figures 4 to 8 shows the FSU catchment characteristics and the unadjusted Q_{med} values at different nodal locations within the respective catchments.

Figure 3 Pooled flood Growth curves derived for the various estimation points with the average for the study area shown as a solid line.

The FSU hydrological estimation nodal points are not available for every stream and particularly for small drain like sub-catchments. Also given the relatively small scale of the

catchments the available estimation point did not coincide with the required location (refer to Figure 4 to 8) and extrapolation was necessary to provide an estimate at the required culvert location.

Culvert	Area	Qmed	Q100	Q100*FE*CC
Ref	km2	cumec	cumec	cumec
1	0.47	0.36	0.76	1.26
2	0.324	0.26	0.54	0.89
3	0.06			
4	1.188	0.36	0.77	1.27
5	1.192	0.36	0.77	1.27
6	0.08			
7	0.15			
8	0.692	0.31	0.66	1.09
9	5.485	2.17	4.58	7.58
10	1.652	0.61	1.29	2.13
11	1.517	0.56	1.19	1.97
12	0.138			
13	0.209			
14	0.209			
15	0.159			
16	0.629			
17	0.38	0.11	0.23	0.39

Table 5	Design Flow Estimates using FSU Method at Culvert Crossings
---------	---

Figure 4 Estimation point on Sruthán na Líbeirtí nearest to culvert crossings

HYDRO ENVIRONMENTAL

Figure 5 Estimation point on Trusky Stream nearest to culvert crossings (note error in catchment extent which includes the Lough Inch drainage area

Figure 6 Estimation point on the Bearna Stream nearest to culvert crossings

Figure 7 Estimation point on the Tonabrocky Stream nearest to culvert crossings

Figure 8 Estimation point on the Rahoon/Knocknacarra Stream nearest to culvert crossings

Recommended Design Flow

The maximum estimated flow magnitude from the various methods was selected as the design flow for sizing the proposed culvert and determining the flood levels at the culvert site and the resultant flood risk. The design flow includes the factorial error of the method and the climate change allowance and is presented below in Table 6

		IH 124 Equation		FSU CD N	lethod		
Culvert	Area	Q100	Q100*FE*CC	Q100	Q100*FE*CC	Design Q100	
Ref	km2	cumec	cumec	cumec	cumec	cumec	
1	0.47	0.35	0.69	0.76	1.26	1.26	
2	0.324	0.24	0.48	0.54	0.89	0.89	
3	0.06	0.04	0.09			0.09	
4	1.188	0.82	1.63	1.63 0.77		1.63	
5	1.192	0.82	1.63	0.77	1.27	1.63	
6	0.08	0.06	0.12			0.12	
7	0.15	0.11	0.23			0.23	
8	0.692	0.51	1.01	0.66	1.09	1.09	
9	5.485	3.23	6.40	4.58	7.58	7.58	
10	1.652	1.05	2.09	1.29	2.13	2.13	
11	1.517	0.98	1.93	1.19	1.97	1.97	
12	0.138	0.10	0.20			0.20	
13	0.209	0.15	0.30			0.30	
14	0.209	0.15	0.30			0.30	
15	0.159	0.12	0.23			0.23	
16	0.629	0.10	0.19			0.19	
17	0.380	0.28	0.55	0.23	0.39	0.55	

Table 6 Recommended Design Flow Magnitude for Proposed culverts

5. HYDRAULIC MODEL ANALYSIS

The proposed culverts were hydraulically assessed in terms of flow capacity and resultant upstream and downstream flood levels for the design flow condition using the 1-D river network hydraulic model HEC-RAS. Specific topographical channel surveys were conducted to provide the geometry information for the modelling exercise. Other sources of topographical information including lidar was also used in defining the geometry of the channel and floodplain area.

All of the proposed stream crossings are considered to have small contributing catchment areas and therefore involve relatively small flood flows. None of these streams were assessed by the OPW as part of the Galway CFRAM study.

The design flood flow considered for each of the culverts is the estimated 100year return period flow multiplied by the factorial error of the estimation method and further multiplied by a climate change allowance factor of 1.2.

The channel roughness of the existing channels was specified as 0.1 Manning's n representing high roughness as they are generally unmaintained. The roughness of the proposed culverts as modelled using a roughness of 0.025 for the near bed section and 0.015 for the upper top section of the culvert.

A summary of the results for each of the culvert references is presented below in Table 7 and presents the computed upstream and downstream flood level relative to Malin Head datum.

Culvert	N6 GCRR Ref	Design Q100	u/s invert	d/s invert	u/s Flood Level	d/s Flood Level	u/s soffit	d/s soffit
Ref		cumec	mOD	mOD	mOD	mOD	mOD	mOD
1	C00/01	1.26	32.99	30.9	33.68	32.10	34.34	32.25
2	C00/02	0.89	39.62	37.94	40.20	39.09	40.82	39.14
3	C01/01	0.09	48	46.82	48.34	47.78	49.20	48.02
4	C02/01a	1.63	39.73	39.04	40.88	40.08	41.53	40.84
5	C02/01b	1.63	38.48	37.25	39.3	38.18	40.98	39.75
6	C03/01	0.12	38.63	37.44	39.01	37.94	39.83	38.64
7	C03/02	0.23	36.83	36.58	37.26	37.29	37.73	37.48
8	C03/03	1.09	18.93	18.51	19.65	19.65	21.43	21.01
	C03/04	1.09	18.82	18.62	19.67	19.67	21.32	21.12
9	C04/01	7.58	21.17	20.69	22.51	22.16	23.67	23.19
10	C04/02	2.13	44.56	42.32	45.33	43.0	47.06	44.82
11*	Diversion	1.97	50.1	45.9	51.00	46.72		
12	C06/01	0.20	53.6	51.69	54.04	52.16	56.1	54.19
13	C07/02B	0.30	57.84	57.65	58.71	58.71	59.04	58.85
14	C07/02A	0.30	56.88	55.79	57.84	57.65	59.38	58.29
15	C08/01	0.23	32.5	29.035	33.74	29.435	33.7	30.235
16	C10/02	0.19	11.58	11.3	11.95	11.62	12.78	12.5
17	C07/01a	0.55	35.89	35.57	38.58	38.56	37.09	36.77

 Table 7 Estimated head and tailwater design flood levels for proposed N6 culverts

11* is a 250m channel realignment / diversion

Culvert 1 crosses the Sruthán na Líbeirtí stream in the townland of Cnoc na Gréine 2km west of Bearna Village. This section of stream channel is moderately steep and the design flow through the culvert will be supercritical. For fishery friendly design some baffles and a low flow channel may be required within the culvert.

Culvert 2 crosses the Sruthán na Líbeirtí stream upstream of Culvert 1 in the townland of Cnoc na Gréine 2km west of Bearna Village. This section of stream channel is moderately steep and the design flow through the culvert will be supercritical. For fishery friendly design some baffles and a low flow channel within the culvert may be required.

Culvert 3 is a very minor drain of 6ha catchment area and at 1200mm diameter culvert there is ample capacity available for this drain.

Culvert 4 and 5 cross the Trusky Stream in the townland of An Chloch Scoilte towards the upstream end of the catchment draining peaty lands to the east and south-east of Lough Inch. These culverts are aligned in series with culvert 5 located downstream of culvert 4. Two large box culverts are proposed, 2.1 m x 1.8 m and 2.5 m x 2.5 m respectively. The large culvert sizes is to facilitate Bat passage as opposed to flow conveyance or fishery requirements.

Culverts 6 and 7 in the townland of An Chloch Scoilte are located on minor drains with small contributing catchment and the proposed culvert sizes of 1200mm and 900mm diameter are generous and will not impede drainage or impact flooding.

Culvert 8 crosses the tributary branch of the Bearna Stream in the townland of Aille. At this location there are 2 branches both of which are to be culverted with a box section $2.5 \text{ m} \times 2.5 \text{ m}$ and buried 0.3 m. This proposed sizing is very generous and will not impede drainage or impact locally on flooding.

Culvert 9 crosses the mainline channel of the Bearna Stream in the townland of Cappagh. This stream along its downstream reach has been identified as a fishery stream. A generous culvert size is proposed for this stream which is 5 m wide by 2.5 m in height. Mammal passage ledges are proposed on both sides of this culvert which effectively reduces the open width to 4m. The survey indicates a moderately steep channel and the hydraulic analysis shows supercritical flow through the culvert barrel. This culvert represents the biggest stream crossing the road scheme aside from the River Corrib bridge crossing. Given the fishery interest for this stream a low flow channel maybe provided within the culvert so as to avoid shallow depths and steep gradient which represents a barrier to fish passage.

Culvert 10 crosses the Tonabrocky Stream in the townland of Ballyburke. The survey shows this to be a narrow steep channel often cascading and jumping between critical and supercritical flow. A box culvert 3.1 m wide by 2.5 m high with mammal ledges along both sides of the culvert reducing the open width to 2.1 m. The hydraulic analysis shows flow to be at critical and supercritical resulting in shallow depths and high velocities. Through the culvert the flow goes supercritical due to the steep gradient.

Upstream a proposed diversion channel connects to this culvert. Culvert reference 11 is a diversion channel of the Tonabrocky Stream along the north edge of the road, which avoids the requirement of a second culvert crossing and facilitates the proposed road alignment which is on top of this stream channel for much of its length along this section. The new channel will have a trapezoidal shape of 1.5m base width, 1.5m deep and side slopes of 1 in 2. The longitudinal gradient for this diverted section of channel will complement the existing channel at a fall of 1 in 60. The hydraulic analysis shows that at the design flow moderately shallow depths and high velocities occur in this channel. To protect the channel a number of stone

weirs in a cascade like fashion should be constructed at various intervals along the channel so as to produce pools and shoals.

Culvert 12 conveys a moderately small drainage catchment, the provision of a 2.5 m x 2.5m box culvert is generously sized for this purpose and will not impede flow or impact on flooding as a result.

It should be noted that culvert Reference 17 discharges to a 450mm storm pipe at the edge of the existing Rahoon Road which connects to the local authority 600mm diameter storm sewer that runs southeast along the Rahoon Road. At the estimated design flow of 0.55cumec this 450mm culvert acts as a serious constriction causing the proposed 1200mm culvert under the proposed link Road to be fully submerged.

Culvert Reference 13 and 14 represent two culverts in series and a small channel diversion. The diversion including channel and culverts is almost 270m long and connects to the drain that discharges to culvert 17. The proposed channel is trapezoidal of 1m base width and side slopes of 1 in 2.

Culvert reference 15 is the culverting of a small minor stream/drain under the proposed road alignment at Barnacranny Hill, Bushypark. This stream / drain is very minor and is already culverted under the Ard an Locha estate road and under the N59 Moycullen Road in a 600mm diameter pipe culvert. The proposal is to increase the size of the culvert beneath the road structure from the existing 600mm storm line to a 1200mm. There is no capacity issue with the existing 600mm diameter culvert as the design flow is relatively small and the vailable hydraulic gradient large at a fall of 1 in 31 through the housing estate and across the N59.

Culvert 16 is located to the east of the River Corrib and represents the culverting of a generally dry ditch. The contributing catchment area is off the steep limestone slopes to the north-east of Coolagh. The run-off coefficient for this area is characterised as very low and therefore the design flow to be catered for is small. A 1200 mm diameter culvert is proposed which will not impede flows or impact on flooding.

6. CONCLUSIONS

The proposed culvert sizes are very generous in respect to the provision of effective open area and flow conveyance and do not for any of the 16 sites represent a constriction to flow. In a lot of cases they have been upsized further to cater for mammal passage with ledges and for bat passage. Where ledges have been included the width of the ledge included is 0.5m on both internal box culvert faces and were modelled hydraulically as being 1m narrower than the width specified (i.e. culvert ref 9 (Bearna Stream crossing) was modelled as 4m wide as opposed to 5m wide). Generally the minimum size provided for this scheme is a 1200mm diameter pipe which is buried by 150mm (except for culvert reference 7 which has a 900mm diameter). All of the structures have inlet and outlet wing and head wall structures. Potential for debris blockage is small given the nature of catchments involved and generous dimensions provided.

The hillside nature of the drainage catchments involved will in flood conditions result in supercritical flow occurring in a lot of cases and therefore where the stream bed is not sitting onto bedrock some armouring / channel protection may be required. Therefore all diversion channels and transitions to and from culverts will be designed and armoured so as to protect against scouring.

Appendix 1 OPW Section 50 Culvert applications

Appendix 2 Section 50 Supporting Drawings of Culverts